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MODIFIED CONDITIONAL YEH-WIENER INTEGRAL
WITH VECTOR-VALUED CONDITIONING FUNCTION

Joo Sup CHANG

ABSTRACT. In this paper we introduce the modified conditional Yeh-
Wiener integral. To do so, we first treat the modified Yeh-Wiener
integral. And then we obtain the simple formula for the modified
conditional Yeh-Wiener integral and evaluate the modified conditional
Yeh-Wiener integral for certain functional using the simple formula
obtained. Here we consider the functional on a set of continuous func-
tions which are defined on various regions, for example, triangular,
parabolic and circular regions.

1. Introduction

The Wiener space of functions of two variables is the collection of conti-
nous function {f(z,y)} on the unit square [0, 1] % [0, 1] satisfying f{z,y) = 0
for zy = 0. Integration on this space was first introduced by T. Kitagawa
([7]). Yeh ([14]) treated the integration of this space for more general func-
tions and made a firm logical foundation of this space. We call this space
as a Yeh-Wiener measure space and integral as a Yeh-Wiener integral.

In [16,17], Yeh introduced the conditional expectation and conditional
Wiener integral and evaluated the conditional Wiener integral for real-
valued conditioning function using the inversion formulae. Chang and the
author treated the conditional Wiener integral for vector-valued condition-
ing function ([5]). In {6], Chung and Ahn considered the conditional Yeh-
Wiener integral for real-valued conditioning function.

Park and Skoug ([8,9]) introduced the simple formula for conditional
Wiener integral and for conditional Yeh-Wiener integral. Chang, Chung,
Ahn and the author {[5,6,17]) used the Yeh’s inversion formulae to evaluate
the conditional Wiener integral and the conditional Yeh-Wiener integral,
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but the Yeh’s inversion formulae are very complicated to evaluate the con-
ditional Wiener and Yeh-Wiener integral. Using the simple formula for
conditional Yeh-Wiener integral, Park and Skoug treated the conditional
Yeh-Wiener integral for sample path-valued, multiple path-valued, general-
ized sample path-valued, boundary-valued conditioning functions ([10, 11,
12, 13]).

The purpose of this paper is to introduce the modified conditional Yeh-
Wiener integral. To do so, we first treat the modified Yeh-Wiener inte-
gral. And then we obtain the simple formula for the modified conditional
Yeh-Wiener integral and finally we evaluate the modified conditional Yeh-
Wiener integral for certain functional using the simple formula obtained.
In [9], Park and Skoug treated the conditional Yeh-Wiener integral for the
functional on a set of continous functions which are defined only on a rec-
tangle. But, in this paper, we consider the set of continous functions on
various regions, for example, triangular, parabolic and circular regions.

2. Modified conditional Yeh-Wiener integral

Let g(x) be a strictly decreasing function on [0, S] such that g(5) = 0
and g(0) =T and let @ = {(z,y) |0 <z <S5, 0<y <g(z)}. And let
C(£2) denote the space of all real-valued continous functions f{z,y) on a
triangle 2 such that f(x,0) = f(0,y) = 0 for every (z,¥) in Q.

For each partition 7 = {(z;,y;) | 4, =1,2,--- ,n} of @ with 0 = 2y <
r < - < Ip = S and Vi = g(mn—i):’i = 0s1=2)"' AL define

nin-1

X‘r : C(Q) — R by X’r(f) = (f(mlr‘yl)a'“ )fgmlryn—l)bf(m%yl)r
e 1f($21yn—2)1f(3"33y1)a e :f(mn—lwyl))' Let Bﬂ "2_ be the U—algebra

of Borel sets in R, And let E be a Borel measurable set in B*%
and let a set of the type

(2.1) I={feC(}] X;(f) € E}
be given. The measure m of such a set is given by

n!n.z—l!
(2.2) m(I)*/"‘f Wixy, s T, Y1+ 3 Yn) dug g dug_11
E
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where

(2.3)
W(wlr Ty Y,y 3yn)
=(2m) |

=

mlﬂkl(mz _ -’171)”_2 - (:L‘n—l — :En—2)]_

n—l( )n—2

[yl Y2—1n Tt (ynvl - yn42)] ~1

n—2

17 (w1, —upj-1)° (ugj — Uz j—1 — U1,j + u1,5-1)°
eﬂfp{—g[z J Ki +Z J J J J
i=1

nly —y-1) o (z2 —z1)(yy — y5-1)

+ -+

(unfl,l - ’U«n2,1)2] }

(mn—l - mn—?)yl

with u;0 =0,7 =1,2,--- ,n— 1. Let T be the collection of subsets of the
type (2.1). Then it can be shown that 7 is an interval class or semi-algebra
of subsets of C(?) and the set function m defined by (2.2) is a measure
defined on the interval class Z and the factor W in (2.3) is chosen as to
make C(£2) = 1 ([14]}). The measure m can be extended to a measure on
the Caratheodory extension of interval class in the usual way. With this
Caratheodory extension measurable functionals on C(2) may be defined
and their integration on C(§2) can be considered.

It is well known ([15]) that if G(uy,1, - ,un—1,1) is a Lebesgue mea-

surable function on R*F and if F : C(2) — R is defined by F(f) =
G(f(z1, 1), -+ s f(®a—1,41)), then

(2.4) [3 o FDm()

=/n§n_1) Gluia,--- ,un—l,l)w(mly e B Y1, cct Yn)
R 2

du111 e dun_lil.

Here we call E(F) = fC(Q) F(f) dm{f) as a modified Yeh-Wiener integral
if it exists. Using (2.4), we easily obtain that a process {f(z,y), (x,y) € §2}
has mean E(f(z,y)) = fc(m f(z,y) dm{f) = 0 and covariance E[f(z,y)
f(u,v)] = min{z,u}min{y,v}. Here we call the process {f(z,y), (z,y) €
0} as the modified Yeh-Wiener process.

Let F' be a real-valued integrable function on C(£2) and let Px_ be the
probability distribution of X, defined by Px_(B) = m(X;1(B)) for B in
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B Then, by the definition of conditional expectation ([16]), for each
function F in L, (C(£2)),

@s) [, Fyan()= [ BEGX-) =6 aPr.@

-

for B in B and E(F(f)|X.{f) = £) is a Borel measurable function of £
which is unique up to Borel null sets in R™5 . Here we call E(F|X,)(€) =

—

E(F(f)|X-(f) = £) as a modified conditional Yeh-Wiener integral of F
given by X..

3. Simple formula for modified conditional Yeh-Wiener integral

For each partition 7 = 7, of {2 and f € C(§2), define the modified quasi-
polyhedric function {f] on € by

(3.)
A@,9) = Fl@imt,v-1) + =5 ot (@i i) = F(@io1,95-1))

)

+ M(f(ﬁi—l,yj) — flzim1,15-1))

Ay
(2 —zi )y —yi-1)
Ay
+ AQLL'AJ’y ¥ f(.'L‘, y)
on each Q;; = (xi—1,2] X {yi—1,9] In &, 4,7 = 1,2,--- ,n, where

At =i —zio1, Ajy = i~ yj—1 and Ay fz,y) = flzi, ;) — Flre1,y5) —
Fziy;—1) + fzioi,y5-1), and

(32) [f1@9) = f@i1,9n-0) + =5 (@ tni) = (@01, 9n-0)
+ H—:_;(f(:ci—laynAi+l) - f(m'i—-lyyn—i))

on each @, = {(z,y) € Q| zic1 < 2 < 2y Ynoi <y < glm)}hi =
1,2,"-,??,, and {f](sc,y)=01f:cy:0

Similarly, for each 7= (m1,- - ., M n-1.M2.1, " ;Ta—1,1) € Rﬂnﬂ__ll, de-
fine the modified quasi-polyhedric function [7] on € by
T— T
(3.3) [z, y) = M1, + A—ﬂ(ni’j"l — Mi-1,j-1)
Y—Yi—1
+ A—;(m—u — ie1,5-1)

7
(@ = zi-1)(y = yj-1) 7

Ai.’,BAj'y H
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on each Qij, where Aij'f]'= Mg — Mi—1, — Mij—1 1T i-1,-1, and

T — Tie
(3.4) Az, y) = Mict,n—i + T;—I(m,n,i — Ti—1,n—s)
T
+ %y:_;;(ni—l,n—i-i-l - m’—l,n—-i)
n—t

on each Q;, M0 =1; =0 and [f](z,y) =0if xy = 0.

We note that both {f] and [7] belong to C(Q2) for each f in C()) and
each 7} in R™5 . And (@ ;) = flzs, ;) and [7](zs, ;) = m; for all 4
and j. On each £2;; ana €, each [f](z,y) and [](x,y) is a linear function
of one variable for each value of the other variable.

The following theorem plays a key role in this paper.

TueoreM 3.1.  If {f(z,y),(z,y) € Q} Is the modified Yeh-Wiener
process, then the process {f(z,y) — [fl(z,y),(z,y) € Q} and X, (f) =

(flz1,y1) 5 fm1, 1), Fze, ), -+ f(@n-1,91)) are (stochastically)
Independent.

Proof.  Let (zp,1,) be in 7. Since E(f(z,y) f(u,v)] = (zAu){yAv), it
is easy to show that E(f(zp, y)(f{z,¥) — [fl(z,¥))) = 0 for (z,y) in ;.
By (3.2), we have

(3.5)
f(ﬂ',’, y) - [f](:L’, y) = f(xa y) - f(mi—la yn—i) _
- m;—j:;_l(f(xn Yn—i) — f(Tic1,Yn_i))
Y — Yn—i
- m(f(ﬂ?z’_h Un—it1) — f(Tiz1,Un—i))

for (z,y) in ©;. Thus it suffices to show that (3.5) is independent of

f(zp, yq)-
For each §; and (zp,y4) in 7, we have three cases:

(3.6) () Tp X Tio1, Ye S Yny
(4) Tp < Ti-1, Yn—itl = Yq
(ét) T; < Tpy  Yq = Yn—i-

" For each case in (3.6), we can obtain E{f(xp, yo)[f(z,v)—[fi{z,¥)]} = Ofor
{z,y) in Q; using (3.5). Because both f(zp,y,) and f(z,y) — [f](z,y) are
Gaussian and uncorrelated, we may conclude that they are independent.(d
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From Theorem 3.1 and the definition of [f] on 2, we obtain that the

two processes {£(z,y) — [f|(z,9), (z,y) € 0} and {[f](x.y), (z,) € O} arc
independent. Using a similar technignue as in the proof of Theorem 2 in [9]
we have the following theorem which also plays an important role to obtain
a simple formula for modified conditional Yeh-Wiener integral.

THEOREM 3.2. Let F € L,(C(2},m). Then for every B € B
60 [ F@an() = [ BFG =7+ ()] dPx. (D)
X7(B)

From (2.5) and (3.7), we may conclude that for F in L1{C(Q),m),

E(F(fNX.(f) =17} and E[F(f —[f]+[7])] are equal for a.e. 77in R,
But while the former is Borel measurable by definition, the latter may only
be Lebesgue measurable.

We note that if h(f7) is Lebesgue measurable on R , then there exists
a Borel measurable function h(r}'), which is unique up to Borel null set, such
that A(7) = h(7) a.e. on R™5™ . Thus we define E[F(f — [f] + [f)] by
any Borel measurable function of 7 which is equal to E[F(f — [f] + [7])] for
a.e. 77 in R™5™ for Fin L, (C()).

Thus we have the following simple formula for the modified conditional
Yeh-Wiener integral which is simple to apply in application.

THEOREM 3.3. If F'is in L,(C(Q2), m), then

(3.8) E(F(f) | X,(f) =) = E[F(f - [f] + [D)]
In particular, if F' is Borel measurable, then
(3.9) E(F(f) | X-(f) =) = E[F(f - f] + [7D]

The equalities in (3.8) and (3.9} mean that both sides are Borel measurable
function of 77 and they are equal except for Borel null sets.

4. Examples of modified conditional Yeh-Wiener integrals

In [9], Park and Skoug treated conditional Yeh-Wiener integral for the
functional F on C(€) which is a set of continous function f on the rectangle
1 = [0, 8] x [0, T} satisfying f(z,y) = 0 for zy = 0. That is, they treated
the function g on {0, S} given by g(z) = T for z in [0, 5].

In this section we treat the region € as the triangular, parabolic and
circular region rather than rectangular region in {9].



Modified conditional Yeh-Wiener integral 55

ExaMPLE 1. Let Q be a triangular region in the first quadrant given
by Q = {(z,y) |[0<2< S5, 0<y<g(x)}for g(x) = —%a:+T. And
let F on C(§) be given by F(f) = [, f(z,y) dz dy. Then the modified
conditional Yeh-Wiener integral of I given X, at 77 is

@y EBEX)D = [ E(fe0) - @) + ) de dy

The equality in {(4.1) comes from Theorem 3.2 and the Fubini theorem.
Since E(f) = E([f]) = 0, we have

(42 EFX)0 = [ (2, v) de dy

n—1n—i

_ZZf [ﬁ](ﬂ:ydmdy+2/ [i(z,y) dz dy.

i=1 5=1
Here we easily obtain

Alzl:Aj,y

(43) -/S; ["ﬂ(w,y) d!ﬂ dy = (7?: 1,7—1 + Th-— 1,7 + i,i—1 + Tl g)

And let Q; = {(z,y) € Q| i1 <2z ST, Yjo1 <Y < —%a:-l—T}, with
i+ 37— 1=mn. On 8y, [7] can be represented by

Ti_1
(4.4) [7(z, ¥} = mi—15-1 + T—'(Th,j 1= Mie1,5—1)

Y- yJ 1 ) )
+ AJy (Th—lj "%—1,3—1)-

Using the expression in (4.4), we get

(4.5)
[ ey dy da
2 p—Lo+T _
=/m“/yll {mi—1,5- 1+T(n”1 Mi-1,5—1)
+ y;Aig__l(m—l,j —Mi-1,5-1)} dy dx
_ Awhyy

6 (Mi1,—1 F Mie1,j + i j—1).
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The last equality in (4.5} comes from the fact that y;, = —%mi_l +
T, yj-1 = —%mi + T and Ay = %Aiw for i,7 = 0,1,2,--- ,n. Since
i+ j—1=n, we have
(4.6) E(F | X;)(7)

n—-1n—t
Az
= Z Z - 1 Jy(m—l,j—l + i1+ Mii-1+ i)
i=1 7=1
n
Az,
+ Z z—gﬁl-g(m—m—i +Ni—1,n—it1 T Min—i)-

i=1

n{n—1
for 7 in Rlz_l.

ExXAMPLE 2.  Let £ be the parabolic region in the first quadrant given
by @ = {(2,9) |0<2<S§, 0<y<g(x)}for g(z) = —LH2? + T. And
let F on C(f) be given by F(f) = [, f(z,y) dx dy. Then, from (4.1) and
(4.2), we have

(4.7) E(F|X-)(7)

n—1n—i "
- E;Aij[?ﬂ(m,y)dx dy+§fﬂi[ﬁ](m,y)dm dy.

Let @; = {{(z,y) €1 <z<x, yj-1 <y < —ngscg + T}, with
i+j—1l=nfori=0,1,2,.--- ,n. From (4.4), we obtain

(4.8)
/ (e, y) dedy
Q;

T T
= {gggm—hjq(%i +zi1) + 1252 (Mij—1 — Mie1,j-1) (3 + x5 1)

+ 3052 {(mi—1,5 — ni—l,jfl)(sﬂﬁ? + 92,21 + gm?_l)Ajy}(Aw)Q

= g7 {20151 (24 ) 501 = i )3 i)

“"60512 1i—1,i—144%; Ti—1 T, -1 Ti—1,5—1 T Lij—1
252

+ ?("f?i—l,j — 77{_1,j_1)R(:ch)}(Ai:c)2

where

822 + 9z;m;_1 + 327y

i+ T

R{z) =
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In (4.8), We used the fact that y; = z7 1+ 7T, yj-1 = —Zzi+ T and

Ay = (:r:1 + z;_1)A;x. Thus we can evaluate the mod1ﬁed conditional
Yeh- Wlener integral E(F|X;)(7) from (4.7),(4.3),(4.8) and ¢ +j— 1 =n.

ExXAMPLE 3.  Let Q be the circular region in the first quadrant given

Q={(z,9) |0<z<T, 0<y<g(z)} for g(z) = VT2 —z2. And
let F on C(Q2) be given by F(f) = [, f(z,y) dzdy. Then to evaluate
the modified conditional Yeh-Wiener integral E(F| X, )(7), we first consider
theset Oy = {{z,y) € Q| zims <z <2y, Y1 <y < VT2 — 2?2} with
i+j—1=nfori=0,1,2,--- ,n. Here the area of Q;, A(£;), can be easily
obtained by

1 . 1Y — 1Y —
(4.9) Aly) = E(mifl'yjfl — Ti_1Yy + T%sin~! i T; 1Y 1)_

From (4.4) and (4.9), we obtain

(4.10)
/ [z, y) dy dx
Q;

Ti- _
= A(fL) [ni—l,j—l - E;(’?z',j 1= Ti-1j-1) = (77% Li— 77"5—1:»’"—1)]
1
E [ Z?Jj +¥5—1) (M1 — im1,i—1)
+ (4 ) (2z; 4+ 251 }{mie 1,7 — 7?i—1,j—1)]-
Ajy
In (4.9) and (4.10), we used the fact that y7 =T —27_, , y7_; =T -z}

and (z; + zi—1)Ax = (y; + y;-1)A;y. From (4.2), (4.3}, (4. 9) (4.10) and
1+ j — 1 = n, we obtain the modified conditional Yeh-Wiener integral

(4.11)

n—1n— ZA:CA'y
(le)ﬁ) ZZ 4 . ('fh 1,j—1 t M1, + T 1+Th,3)

i=1 7=1

+ Z {A(Qi) [ni—l,n—i - SZ_;_ (Min—i — Mie1,n—s)
i=1 i
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_ Y o ]

An—i+1y ('rh—l,n—1+l 7]1—1,11—2)

1r(An_iy19)?

= 2 n—i n—1i i1 — hi—1,n—1
+6[ A (2yn—it1 + Yn-i) (M, Ni—1n—i)

(Agz)?

—mem— (225 + i1 ) (Mie 1,0~ 041 — Wi n—i]
+An-i+1'y($ + 2o 1) (i 1,n-it1 — Nim1,n—i)

ni{n—1)
for fin Rz .
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