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CONDITIONAL FOURIER-FEYNMAN TRANSFORMS
AND CONDITIONAL CONVOLUTION PRODUCTS

CHULL PARK AND DAVID SKOUG

ABSTRACT. In this paper we define the concept of a conditional Fourier-
Feynman transform and a conditional convolution product and obtain
several interesting relationships between them. In particular we show
that the conditional transform of the conditional convolution product
is the product of conditional transforms, and that the conditional con-
volution product of conditional transforms is the conditional transform
of the product of the functionals.

1. Introduction

Let Cy[0, T denote one-parameter Wiener space; that is the space of all
R-valued continuous functions z on [0, 7] with z(0) = 0. In defining various
analytic Feynman integrals one usually starts, for A > 0, with the Wiener
integral

(1.1) ElF) — fc . FA~}a)m(de)

and then extends analytically in A to the right-half complex plane. Through-
out this paper our starting point is the (generalized) Wiener integral

(1.2) E.[F(\*2(z, )] = /C - FO2(z, ))m(da)

where z is the Gaussian process

(1.3) 2z, t) = /0 h(s)dz(s)
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with h in L;[0,7], and where foT h{s}dz(s) = (h,z) denotes the Paley-
Wiener-Zygmund stochastic integral. Of course if A(t) = 1 on [0, 7], then
z{z,t) = z(t) and so the (generalized) Wiener integral in (1.2} reduces to
the Wiener integral in (1.1). We will simply refer to the integral in (1.2) as
a Wiener integral.

The concept of an L; analytic Fourier-Feynman transform (FFT) was
introduced by Brue in [1]. In [2], Cameron and Storvick introduced an L,
analytic FFT. In [14], Johnson and Skoug developed an L, analytic FFT for
1 < p £ 2 which extended the results in [1,2] and gave various relationships
between the Ly and L, theories. In [10], Huffrnan, Park and Skoug defined
a convolution product (CP) for functionals on Wiener space and in [11,12]
obtained various results involving and relating the FFT and the CP. In [13],
they worked with (generalized) FFT’s and (generalized) CP’s using ideas
and results from [8]. In this paper we define the concept of a (generalized)
conditional FFT (CFFT) and a (generalized) conditional CP(CCP) and
obtain several interesting relationships between them. In particular we
show that the conditional transform of the conditional convolution product
is the product of conditional transforms. We also show that the conditional
convolution product of conditional transforms is the conditional transform
of the product of the functionals. In this paper, for notational simplicity,
we decided to work with p = 1; however many of our results also hold for
1 < p < 2. In particular all of our results in section 4 hold for 1 < p < 2,

2. Definitions and preliminaries

Let h € L3[0, T] with ||h]| > 0, let z(xz,t) be given by (1.3) and let

t
2.1) alt) = / B2 ().
0
Then z is a Gaussian process with mean zero and covariance function
Elz(z, s)z(z,t)] = a(min{s, t}).

In addition, z(-,t) is stochastically continuous in ¢ on [0, 7).

Let M denote the class of all Wiener measurable subsets of Cy[0, 7]
and let m denote Wiener measure. A subset B of Cy[0,T] is said to be
scale-invariant measurable [5,15] provided pB € M for all p > 0, and a
scale-invariant measurable set N is said to be scale-invariant null provided
m{pN) = 0 for all p > 0. A property that holds except on a scale-invariant
null set is said to hold scale-invariant almost everywhere (s-a.e.). If two
functionals F and G are equal s-a.e., we write F =~ G.
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For a rather detailed discussion of scale-invariant measurability and its
relation with other topics see [15]. In [20], Segal gives an interesting dis-
cussion of the relation between scale change in Wiener space and certain
questions in quantum field theory.

In [2,14] all of the functionals F' on Wiener space and all the C-valued
functions f on R™ were assumed to be Borel measurable. But, as was
pointed out in [15, p. 170], the concept of scale-invariant measurability
in Wiener space and Lebesgue measurability in R™ is precisely correct
for the analytic FFT theory and the analytic Feynman integration the-
ory. Thus, throughout this paper, we assume that every functional F
we consider is s-a.e. defined, is scale-invariant measurable, and for each
A >0, F(\"%z(x,-)) is Wiener integrable in z on Cy[0, 7.

First we state the definition of the (generalized) analytic Feynman inte-
gral of F [8,13]. Let Cy = {A€C:ReA>0}andlet C, = {A€C: A #
0 and Re A > 0}. Let J(A) = E[F(A~2z(z,-))]. If there exists a function
J*(A) analytic in A on C such that J*(A)} = J(A) for all A > 0, then J*(A)
is called the analytic Wiener integral of F’ with parameter A, and for A in
C. we write

(2.2) E¥ [F(z(z,-))] = J*(A).

Let real ¢ # 0 be given. Then we define the analytic Feynman integral of
F with parameter ¢ by (A € C,)

(2.3) B [F(z(x, ) = lim B [F(z(z,))]

if the limit exists.
Next we state the definitions of the (generalized) L, analytic FFT and
the (generalized) CP given in [13]. For A € C; and y € Cy[0, T}, let

(2.4) Ta(F)y) = EZ™ [Fly + (2, ).
We define the L, analytic FFT, Tq(l)(F) of F, by the formula (A € C;)

(2.5) TV (F)(y) = im, T5(F)(y)

if it exists. We note that Tq(l)(F) is only defined for s-a.e. y € Cy[0,T]. Also
if Tq(l)(F) exists and if G = F, then Tq(l)(G) exists and Tél)(G) R~ Tél}(F).
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We define the (generalized) convelution product (F x G), (if it exists)

by
(2.6)
F e ) — Eoowa [F (y +\Z/E_2:c, )) Q ('y —;(;, ))] aec,
B3 [F (%z_\/(;)) G (u\/(;))] =i
REMARK 1.

i} Forall A€ C,, (F*G)y = (G*F).
ii) When A = —ig, we often denote (F * G)» by (F * G),.
iii) For A >0,

(2.7) E2A[F(y + 2(z, )] = Bo[F(y + A ¥2(z, ).

3. Conditional transforms and convolutions

For some related work involving conditional Wiener integrals see [7,9,17,22].
Throughout this paper we will always condition by

(3.1) X(z) = z(z,T).
For A>0and n € R let
(3.2) I(n) = E(F(A"3z(z, )| A" 2(2,T) = )

denote the (generalized) conditional Wiener integral of F(A~3 z(z, -)) given
A" %z(z,T) [8]. If for almost all 7 € R, there exists a function J;(n),
analytic in A on C, such that J3(n) = Ji(n) for A > 0 then J3(n) is
defined to be the conditional analytic Wiener integral of F(z(x,-}) given
z(z,T) with parameter A and for A € C we write

(3.3) Ji(n) = B (F(z(z, ) z(2,T) = n).

If for fixed real g # 0, Alim_ JY(n) exists for almost all n € R, we denote
——ig
the value of this limit by

(3.4) E*(F(2(x,))2(z,T) = n)
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and call it the (generalized) conditional analytic Feynman integral of F
given X with parameter g.

REMARK 2. In [18], Park and Skoug give a formula for expressing condi-
tional Wiener integrals in terms of ordinary Wiener integrals; namely that
for A > 0,

E(F()\ z{z, A 2z z,T) = )

(3-5) =E, [F(,\"%Z(fﬂr) - )‘_%z(:”’T)aE((i;“_)) * C;E%;I)]

Thus we have that
EM (F(z(z,)2(2, T) = n)

(36) _ pos [F (z(m, ) - ;(% (o T)+ %ﬂ

and
E*Ma(F(z(z,))|2(x, T) = n)

(37) = B [F(s(o) - 2w + 2 )|

where in (3.6) and (3.7) the existence of either side implies the existence of
the other side and their equality.

Next we define the (generalized) conditional FFT (CFFT) and the con-
ditional convolution product (CCP). For A € C4, n € R and y € Gy[0,T7,
let T (F|X)(y,n) denote the conditional analytic Wiener integral of F/(y +
z(x,-)) given X (z) = 2(z,T); that is to say

TA(FIX)(y,n) = B (F(y + 2(z, ))|=(2, T) = 0)

(38) __ pranw 2{x ( ) ﬁ
=z [y ot - e + 57 )|
We define the CFFT, Tq(l)(F{X Wy, n) of F by the formula

T (FIX)(@,m) = lim, Ta(FI1X)(ym)

(3.9) _ gonko [F (y +2(z,) — a%i% 25 Zgl’)‘?)?)]
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if it exists, and we define the CCP ((F * G)|X)(y,n) (if it exists) by the
formula
(3.10)

[ gamw (F (y”(“’")) G (y‘j(;")> |2(z, T) = n) , AeC,

| B (F (y+j(;” ')) e (y—_%‘i—)) |2(z, T) = n) A= —ig
(oo (L2200 _sOA0T) i )

V2 a(T)WV2  a(T)V2

y—z(z,) | a()z(z,T) al)y
'G( vz a(T)V2 _a(fil“)\/§)]’/\€{&r

anfe y+ 2(z,’) a()z(z,T) a{-)n
e [F( Vi 002 +a(T)\/§)

Afy—2z) ez, T)  al)n O = i
‘ (2w A

Again if A = —iq, we will denote ((F*G)»|X){(y,n) by ((F*G)}X)(y,n).

LEMMA 1. If ((F * G),|X) exists then ((G * F}4|X) exists and

(3.11) ((G * F)q| X)(y,m) = (F * G)g| X)(y, —n)-
Proof. Clearly it suffices to show that

(G + F)x|X)(y,m) = (F * G)\)|X)(y, —n)

for all A > 0. But this follows from (3.10), (2.7), and the fact that if
H(X\"2z(z,-)) is Wiener integrable in z on Co[0, T}, then

E[H(_‘A*%z(i’ ))] = E[H()\_%z(—gz, ))] = E[H(’\_%Z(Is ))] 0O

THEOREM 1. Assume that Ty (F), TAV(G) and TV ((F*G)4) all exist
at ¢ € R — {0}. Then

(3.12) TP ((F * G))(y) = TV (F)y/ V)TN (G) (w/V2)
for s-a.e. y € Cy[0,T).
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Proof. In view of (‘2.5), (2.4) and (2.7) it will suffice to show that 75 ((F*
G )y) = Th(F)(y/V2)Tr(G)(y/v2) for A > 0. But for all A > 0,

T\((F * C)»)y) =E:x {Ew [F(y+ /\‘%z(m,\-}; A“%z(w,-))

But, z(z"}jﬁz(w") and z(m");,g(w") are independent Gaussian processes, and
each is equivalent to z(z,-). Hence

TA(F * G)\) ()

_E, [F(_‘?/% 4 ,\—%z(m,.))]gx [G(% + ,\—%z(m,-))]
=T\ (F)(y/V2)TA(GC)(y/V?2)

which concludes the proof of Theorem 1. O

We are now ready to establish one of our main results; namely that the
conditional transform of the conditional convolution product is the product
of the conditional transforms.

THEOREM 2. Assume that Tq(l) ((F * G| X) (o)1 X) (v,m2), Tél)
(F|X) and T(G|X) all exist at g € R — {0}. Then
(3.13)

T (((F*G) g X) (- m )1 X) (9, m2)

=7 M2 ¥ M\ p(1) iz =
_ T <F|X>(y/x/§, > )qu (G|X)(y/\/i, ~ )

for s-a.e. y € Cy[0,T).

Proof. Again, as noted in the proof of Theorem 1, we only need to
consider the case where A > 0. But using (2.7), (3.8) and (3.10), we observe
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that for all A > 0,

TA({((F * G)A 1 X) (s m )| X) (y m2)

:Em(Ew(F(“ /\—‘5‘2(:1’:,3;- A—%z(w,-))

-G(y +_ A2 z(z,-) — A3 2{w, ‘)) }A"%z(w, T)=771) ’A‘%z(m,T) _ ,72)

V2
5| (G5 + J_(dx) (Lé%T)+z“’)‘ )

(7?2 +m )
(

.G(_':‘L._}_L(z(m,,) a()az((;)T) cw,) + 2 ):((;%,T))

+amen = )|

Now, z(z,)— % +z{w,-)— % and 2(z,-)— %—z(m, )+
“—('%l are independent processes as can be seen by checking their co-
variance functions. Hence the expectation of F'G equals the product of the
expectations and so using (3.10) and (3.8) we see that

TA(((F * G)A|X)(,TI1)|X)(% 7]2)

_E, (Ew (F(y + )\“‘lfz(a:,\-)/; /\—%z(w,.‘)) ‘A'%z(w,T) _ 7]1)

|)\A%Z($1T) = 772)

)\*%z('w,T) = m)

A3 z(z,T) = ng) .

z(z, ) — 2w, ")

is equivalent to z(z, -) and so is . Hence
q ( ) \/5

2z, ) + z(w, )

Now 7
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for A >0,

TA(((F * G X) (e m)IX )y, m2)
= EI(F(—?-”— + A3 2(x, -))’)\_%Z(E,T) =

V3
Y _1 1 T —Th
B(Gls + Fa(z,) A Ha(a, T) = ﬂ)

772\"/%’71)

4. Conditional transforms and convolutions for the Banach
algebra & '

The Banach algebra & was introduced by Cameron and Storvick in [3]
and consists of functionals expressible in the form

(1.1) F@) = [ o exp{i fo Tv(t)dﬂ:(t)}df(v)

for s-a.e. x € Cy[0,T] where f is an element of M(L2[0,T]}, the space of
all C-valued countably additive finite Borel measures on L;[0,7]. Further
work on & shows that it contains many functionals of interest in Feynman
integration theory [4, 6, 16, 19, 21].

From {13, p. 23] we have that for each u € L3[0,T] and each h €
L[0,T],

(4.2) /Uu(s)dz(m,s):/o w(s)h(s)dz(s)

for s-a.e x € Cy[0,T), and if F € 8, then H(x) = F(z(z,-)) belongs to S.
Thus, throughout this section we require h to be in Ly [0, T}, rather than
simply in Ls[0, 7).

In this section we use the following well-known Wiener integration for-
mula several times. For A > 0 and u € L2[0,T],

w  ofelges)]-{ 4]

where (u, z) denotes the Paley-Wiener-Zygmund integral fg u(t)dz(t).

In our first lemma we show that Tq(l)(F |X) exists for all FF € S,
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LEMMA 2. Let F € § be given by (4.1). Then for all g € R — {0},
T (FIX) (y,m) |
. T
=] exp{i('u,,y) + inb — i/ R () [u(t) —b]zdt}df(u)
L;[0,T) 29 Jo

: 2 12
L2[0,T] 2q 2q

for s-a.e. y € Cy[0,T] where (u,y) = fg'u(s)dy(s) and b = a(lp) fOT
u(t)h?(t)dt.

Proof. Using (3.8), (2.7), the Fubini theorem, and (4.3}, we see that for
A>0, :

Tr(F|X){(y,m)

=FE, [sz[o,T] exp{i /OT u(t)d(y(t) +AT32(x, t)

e, 4

= /Lg[o,T] exp{z'](;T u(t)dy(t) + % UTu(t)hz(t)dt} |

‘E, [exp{ % fo " ()Rt da(t)

_ \/Xi(fr) /0 "R (0t fo Th(t)d:c(t)}]df(u)

= f exp{i(u, y) + inb}
Lz[U,T]

[ [ " he)iue) - dew(t)}] & ()
- fL o exp{i(u,y)+inb—% OT h"’(t)[u(t)—b]zdt}df(u).

But the last expression above is an analytic function of A in € and is a
bounded continuous function of A for all A € C since f is a finite Borel

measure. Hence Tél)(F|X ) exists and is given by (4.4). O

In our next lemma, for F and G in S, we obtain a formula for the
conditional convolution product ((F * G)4|X)(y,n).
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LEMMA 3. Let F and G be elements of S with corresponding finite
Borel measures f and g in M(L2[0,T]). Then for all g € R — {0} and s-a.e.
ye< CO [07T];

((F * G)ql X)(y,m)
m@—d}

i
(4.5) - ng[o,T] exp{%(u Tyt V2
-exp{ﬁfq [ P - oo - - C)]zdt}df(u)dg(v)

where b= s [ u(t)h?(t)dt and ¢ = s [ w(t)R3 ().

Proof. Using (3.10), (2.7), the Fubini theorem, and (4.3), and proceeding
as in the proof of Lemma 2 above, we obtain for all A > 0 that the expression
((F = G)»|X)(y,n) equals the expression
(4.6)

_t u in T, ~
/Lgm,mex"{\/é( Font s [ O -0

B[ | "R ) - 8) — (vld) - Nz ()} | wrdato)

i in(b—c)
= exp —={u+uv,y) + ———=
.[Lg[o,T] p{ V2 wtv.y) V2

T
-5 | OO - v0) - 6 - ot i)

But (4.5) now follows directly from (4.6) since the last expression in (4.6)
above is an analytic function of A in €, and is a bounded continuous
function of A throughout C;.. ) 0

Our next lemma shows that the conclusions of Theorem 2 hold if F and
G arein S.

LEMMA 4. Let F and G be as in Lemma 3. Then for all real q # 0,
TEV(((F * G)gl X)(m) | X )y, m2)

_ 2+ 72 —7h
=) (/v ) 7 (1) (Ve B )

(4.7)

for s-a.e. y € G0, 7).
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Proof (outline). Proceeding as in the proofs of the above lemmas, a
direct calculation shows that the left-hand side of (4.7) equals the expression

i v ib(ne +m) | ic(ne —m)
,[LEEO,T] exp{\/i(qu ) V2 " V2 }

-exp{—%q f R [(t) — v(t) — (b — c)]2dt}
1)

T
exp{ - [ W00 5 o) - b+ e o)
/ .
which, upon simplification, equals the right-hand side of {4.7). O

In our next theorem we obtain an expression for the conditional convo-
lution product of conditional transforms.

THEOREM 3. Let F and G be as in Lemma 3 and let ¢ € R—{0}. Then
for s - a.e. y € Cyl0,TY,

((z0 06 T X)) _qu) (v.m0)

]
= expd —={u + v,y) + i{mb+nc
[ o] 750 ) it

s ia(T)(b + c)?
+ ﬁ(b - C) + T}

i (T
-exp{—"a?q-/ R2(8)[u(t) +v(t)]2dt} df (u)dg(v).

0

Proof. Using (3.10), (4.4), the Fubini theorem and (4.3}, we obtain that
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for A >0,
((z0 @) m) TG0 m)) 1) )

R i

z(z, )+ a(")z(z,T)  a()m 2)]
V2V aTves  amve !

= X L u+v 1 ) ”?3( —¢)
_/L§[0,T]e P{\/ﬁ( +v,y) +ibg +ione + ——— 7 }

o gz 4. - o (unl + o?) |

Fufe{ / (Ofult) = o) ~ (0 lda(t) } | & )0
= ng{o,T] exp{ﬁ(u+v,y) + ibm +icmz + %}

exp{ 2 4+ &) L (bl + fon?) )

- exp{—i [ 120l - o) - - C)]zdt}df(u)dg(v) .

T<1)(G|X)(

4
But the last expression above is an analytic function of A in C; and is a
bounded continuous function of A in C,, and so setting A = —i(—q) = ig

yields (4.8) upon use of the equality

ia(T) 2 T 2 — )2

)+ o [ e - ot

“‘(T)(H ot + 2 / K2 (£)(u(t) — v())(b — c)dt. 0
4q fo

In our next theorem we obtain an expression for the conditional trans-
form of a product of functionals in &.

THEOREM 4. Let F' and G be as in Lemma 3 and let ¢ € R— {0}, Then
for s-a.e. y € Cyl0,T],

T(F(V2)G(-/V2)X) (v, )

_ exod bt in(b+c) | ia(T)(b+c)?
(4.9) _Lg{o,T} p{\/§< oyl + V2 + 4q }

T
-exp{-%fo hz(t)[u(t)+v(t)}2dt}df(u)dg(v).
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Proof. Using (3.8), the Fubini theorem and (4.3), we obtain that for all
A>0,

TP VDE( VX))
- exnd v 4 FAOTC)
—/;,g[u,:r] p{ﬁ‘ tuy = }

. AT
-exp{—% f R2(t)[u(t) — v(t) — (b+ c)]zdt}df(u)dg(v).
0
Apgain letting A — —~iq, and simplifying, yields (4.9). d

A close examination of the right-hand sides of (4.8) and (4.9) shows that
they are equal if {7, 72,73,7} is in the solution set of the system

V2 -3 =0
n—v2n+n=0.

THEOREM 5. Let F and G be as in Lemma 3 and let {m,n2,1m3,7}
satisfy the system (4.10). Then for all ¢ € R — {0},
(4.11) (T FIX)C )T (GIX ) 72)) = X) (9, 1)
=T (F(/V2)G(-/V2)| X)y,m)
for s-a.e. y € Cp[0,T.

Following are some interesting special cases of (4.11):

(a) ((T§1>(F|X)(-, m)* Té”(GlX)('ﬂ?z)) Hq|X) (y’ m_\;im)

_ (1 . ] M2+
= TO(F(-/V2)G(-/V2)|X) (y, = )

(1 AW et

(> ((T 1) (12 ) n10(ax) (1 ))_q|x) (vr7)
= T (F(/VIG(/V2IX) ).

© (@PEXM T GIX)20) o X1/ V)

3
= TEVDECVDIX) (1,0,
V2
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