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DECOMPOSITION OF SOME
CENTRAL SEPARABLE ALGEBRAS

Eunmi CHOI AND HEISOOK LEE

ABSTRACT. If an Azumaya algebra A is a homomorphic image of a
finite group ring RG where G is a direct product of subgroups then A
can be decomposed into subalgebras A; which are homomorphic images
of subgroup rings of RG. This resuit is extended to projective Schur
algebras, and in this case behaviors of 2-cocycles will play major role.
Moreover considering the situation that A is represented by Azumaya
group ring RG, we study relationships between the representing groups
for A and A,. '

1. Introduction

Let R denote a commutative ring. The Brauer group B(R) is the group
of similar classes [A] consisting of an Azumaya (i.e., central separable) R-
algebra A over R (refer to [4, (2.5)]). An Azumaya R-algebra which is a
homomorphic image of a group ring RG for some finite group G is called the
Schur algebra. The set of similar classes of Schur algebras forms the Schur
subgroup S(R) of B(R). In [5], two subgroups of S(R) were introduced; one
is §'(R) consisting of elements in S(R) that are represented by cyclotomic
algebras (R(c,)/R,a) with 2-cocycle « on Gal(R(e,)/R) having values
in {(¢,) for n > 0. The other is S”(R) consisting of elements in S(R)
with a representative which is a homomorphic image of separable group
algebra RG. The group ring RG is separable if and only if |G| is unit of
R. The 5'(R) and S”(R) need not equal, however if R = k a field then
S5"(k) = §'(k) = (k) due to Brauer-Witt theorem [10].

The Schur k-algebra was generalized by Lorenz and Opolka (1978) that a
finite dimensional central simple k-algebra which is a homomorphic image
of a twisted group algebra kG® for some finite group G and some & €
H?(G,k*) is called the projective Schur algebra over k. The set of similar
classes of projective Schur algebras forms the projective Schur group PS(k).
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In the paper we study decompositions of some Azumaya algebras such
as Schur and projective Schur algebras. In section 2, we prove that if A
is an Azumaya algebra which is an epimorphic image of RG and if G =
G1 x Gy then A is decomposed into Aznmaya subalgebras A; where A;
is represented by RG; (i = 1,2). The similar result can be obtained with
respect to projective Schur algebras, and in this case behaviors of 2-cocycles
corresponding to representing groups play important roles. In section 3,
regarding RG itself as an Azumaya group ring which represents A, we
study interrelationships between the representing Azumaya group rings for
A and A;. .

Throughout the paper, R will always denote a connected commutative
ring. Let [A] € B(R) denote a similar class of finite dimensional Azumaya
R-algebra A, and for A’ € [A] we denote A" ~ A. Let u(R) be the set of
units of R, k* be the multiplicative subgroup of a field k and £, (n > 0}
be a primitive n-th root of unity. For a field extension L/k, we denote
H*(Gal(L/k), L*) by H*(L/k).

2. Schur and projective Schur algebras

For Galois extensions of commutative ring R, we may refer to {1] or
[4]. Let A be any R-algebra and B be any subalgebra of A. Let AP =
{a € A| ab=ba for any b € B}. Then A® is an R-subalgebra of A which
commutes with B. We remark the following lemma for convenience.

LEMMA 1 [4, (2.4.3)]. Let A be an Azumaya R-algebra.
(1) If B is an Azumaya R-subalgebra of A then so is A®. Moreover
(A)A" =Band B AP 2 A;b®@a s ba forbe B,ac AE.
(2) Suppose B and C are subalgebras with BQC = A, bQ@c— be (b€
B,c e C). Then B,C are Azumaya algebras with A® = C, A® = B.

Thus for a given Azumaya algebra A, Azumaya subalgebras of A occur
in pairs, each of the pair is the commutator subalgebra of the other and
whose tensor product is isomorphic to A.

THEOREM 2. Suppose that [A] € S(R) and the Azumaya algebra A is
represented by a finite group ring RG. If G = Gy x Gy then A can be
decomposed into A; @ Ay where each A; is represented by RG;, thus [A;] €
S(R) for i = 1,2. Furthermore if [A] € §"(R) then each [A;} € S"(R).

Proof. Let f be the surjective homomorphism RG — A and let {uy| g €
G} denote an R-basis for RG with multiplication ugu, = ug: for g,z € G.
Since RG = R(G x G2) =& RG1 &g RG, as R-algebras [9], for g = g1gp € G
(9: € G;), the R-basis element u, ¢ RG corresponds to uy, ® ug, where
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ug, is an R-basis of RG;. Hence we may use the same notation f for the
surjection RG) ® RGo — A defined by f(ug, ® ug,) = fug).

Let f; be the restriction of f to RG; and let A; = f;( RG;) for i = 1,2.
Then f1 ® fo: RG — A1 ® A2 maps ug, ® ug, to fi(ug, ) ® fa(ug,), this
implies that A; and As are R-subalgebras of A such that 4; ® A; — A,
a1 ® ap — ajap is an R-algebra isomorphism. Thus f = f1 & f2 and 4; is
an Azumaya R-algebra due to Lemma 1. Clearly [4;] € S(R) for i = 1,2.

In particular if [4] € S”(R) then |G| € u(R) hence there exists m € R
such that m|G| = 1g. Since |G;] divides |G|, |G| = |G;]t; for some ¢; > 0 and
1g = t;m|G;|, thus |G;| is unit in R. It thus follows that [4;] € S"(R). [

For finite groups G and H, if o € Z%(G,u(R)) and 3 € Z2(H,u(R))
then a x ( defined by & x 8((g1, h1), (92, h2)} = (g1, 92)B8(h1, ha) with g; €
G, h; € H is an element in Z%(G x H,u(R)). In particular if G = H then
af defined by afB(g1,92) = alg1, 92)8(g1, g2) is contained in Z%(G, u(R)).

THEOREM 3. Let [A] € S'(R) and A be a cyclotomic algebra (R(en)
/R,a) where a has values in {en). If n is divisible by pq with primes p # g
then A can be decomposed into A ® Az and [A;] € S'(R) fori =1,2.

Proof. For any z,y € Gal(R(e,)/R), the order of a(z,y) divides n
because afz,y) € {(e,). With the prime divisor p of n, write a(z,y) =
a(z, y)pe(z, y)ly and n = nyny where a(z,y), fresp. ny) is the p-part and
a(z,y)y [resp. ny| is the p’ part of a(z,y) fresp. n|. In fact, a(z,y),
and ofz,y), are powers of a(x,y) such that the order of a(z,y)p is a
power of p while the order of a(z,y), is prime to p. Since pg|n for p # q,
ny # 1 and a(z,y)y # 1. Thus it follows that (e;) = (en,} X (€n,) hence
oz, y)p € {en,) and oz, y)py € (en )

Let ai(x,y) = a(z,y)p and ao(z,y) = afz,y)y. Then it is easy to see
that

a1 (z, y)en (xy, 2) - aa(z, y)ao(zy, 2) = ou(z, y2)zan(y, 2)- oz, yz)zas(y, z)
for any z,y, 2 € Gal(R(¢,,)/R). Thus due to the uniqueness of p, p’-part, it
follows that oy, oz € Z2(R(g,)/ R, u(R(e,))) on which the natural Galois
action is defined, and the values of o, a3 are contained in {(¢,,) and (Enp,>
respectively. Consequently o = ajap and it follows from [4, (4.2.13)] (or (7,
(29.9)]) that A = (R(en)/R, @) is similar to {R(g,)/R, 1) ® (R(en)/R, a2).
Now let (R{¢,)/R, ;) = A;. Then A = A; ® A; and [4;] € S'(R). O

The converse of Theorem 2 follows immediately that if an R-algebra A is
decomposed into A; ® A; where A; are Schur R-algebras (i = 1, 2) then [A]
belongs to S(R). In particular if [A4;] € §”(R) for i = 1,2 then [A] € §"(R).
For the same question with respect to S’(&), we have the next theorem.
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THEOREM 4. Let A = A; ® Ay with [A;] € §'(R) (i = 1,2). Then
[4] € S'(R). Moreover if A; = (R(e,,)/R, ;) for a 2-cocycle a; and if
(r1,m2) = 1 then A is a cyclotomic R-algebra with respect to the 2-cocycle
] X 9.

Proof. We denote the inflation map H%(R(en,)/R) — H*(R{€n,,€n,)/R)
by inf; for ¢ = 1,2, and we consider inf;¢; defined by

(infics ) (61, 0i2) = (i, Biz),

where 0;; = 8;;Gal(R(gn,,&n,)/R(€:)). Then following {7, (29.16)]), it is
easy to see that (R(e,,)/R, o;) is similar to (R{en,,&n,) /R, infia;), and it
thus follows that

A1®Ay = (R(en, )/ R, 01)®(R{en,) /R, a2) ~ (R(€n,,&ny )/ R, infioinfras).

Thus A is similar to (R(e,,,€n,)/R, 3) for 8 = infianinfoay, hence [4] €
S'(R).

We now suppose that (n1,n2} = 1. Then for any 8; € Gal(R(e,,,2n,)/R),
¢; can be written as (03, 7;) where o; € Gal (R(e,,}/R) and 7; € Gal(R(en,)
/R). Thus infia(61,682) = ai(o1,02) and infoae(0,82) = az(71,72), this
shows that -

infyc;infoan(f,62) = a1 X az((a1, 1), (02, 72)),
and 8 = infy ¢ infoar = oy X o,

This completes the proof. O

Let a be a 2-cocycle in Z2(G, u{R)) with trivial G-action on R and let
{uql g € G}, u1 = 1 denote an R-basis for the twisted group ring RG* with
multiplication (ru,)(su,) = rsa(z, y)ug, and a(z,1) = a(l,z) = 1 for all
r,s € R, z,y € G. An Azumaya R-algebra A is called a projective Schur
R-algebra if it is a homomorphic image of RG* for finite group &, and the
set of similar classes of projective Schur algebras forms a group PS(R).

THEOREM 5. Suppose that [A] € PS{R) and A is represented by a
twisted group ring RG®. Assume G = G} x Ga with (|G1],|G2|}) = 1. Then
A can be decomposed into Ay ® Ay where A; is represented by RGP for a
2-cocycle o; € Z%(G;,uw(R)), thus [A;] € PS(R) for i =1,2.

Proof. Let f be the surjective homomorphism RG® — A, and let o; €
Z*(Gi,u(R)) be the restrictions of & to G; for i = 1,2. Since (|G1],]G2|) =
1, it follows from [6, (2.3.14)] that the pairing ¢, : G1 x G2 — u(R)
defined by ¢u(a,b) = ala,b)a(b,a)™! for a € G1,b € Gy is trivial, thus
ala,b) = a(b,a) and H?(G1 x G, u(R)) is isomorphic to H2(G1,u(R)) x
H?(G3,u(R)) that makes o correspond to (ay, o).
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For any g = g1g2 € G (g: € G;), we define
¥ RGN — RG®, ¥(w,) = alg1, g2)uy

where w,, u, are bases for RG****2 and RG® respectively. For x = zy25 €
g1 g
G, since

alg1, g2)o(x1, T2) (9192, T122)uge
a(g1, gaT1%2) (g2, T172)0(Z1, T2 )Uge
a(g1, z1g2z2)cx(gox1, z2)0(g2, T1)ugs

= a(g1, z1)a(ge, T2)a(g121, g2T2)uge

= a1(g1, €1) (g2, T2) (9101, G222 tge

= (o x a2)(g, T)ax(g171, g2T2 )tige

= Y((e1 X a2)(g, 2)wgs) = Y(wgw,),
it follows that 4} is an isomorphism. Moreover due to [6, (5.1.1)], we have
RG® =2 RG> = R(G1 x G)™M**2 = RGY' ® RG5*. Using the same
notation f, write f : RGY' ® RG5* — A abusively and let f; be the
restrictions of f to RG" and A; = f;{RG}"). Then 41 ® A2 = f(RGY' ®
RG5?) =2 A which maps a1 ®a2 € 41 @Az to a1az € A. This implies that A
is a homomorphic image of R(G x G2)* **?, and A) and A are Azumaya
algebras because of Lemma 1. Hence it follows that [A4;] € PS(R). 0

d’("-%)d’(wm)

Moreover, the next corollary follows immediately.

COROLLARY 6. If A = Ay ®As with [A;] € PS(R) and if A; is an image of
RGY" fori = 1,2, then [A] € PS(R) and A is the image of R(G1 x Gg)*1 %%,

3. Azumaya algebras

Counsider projective Schur algebras which are epimorphic images of twist-
ed group rings RG® for a € Z*(G,u(R)) that are separable algebras, i.e.,
|G| € u(R). Then the set PS"(R)

PS"(R) = {[A] € PS(R)| RG® - A,|G| c uw(R), a € H*G,u(R))}

forms a subgroup of PS(R) ({9, 1.2(7)]), and S”(R) < PS"(R).

We restrict our attention to the situation that [A] € PS”(R) where A is
a homomorphic image of RG* such that G = Gy x G5. Then by Theorem 5
we have that A = A; ® Az where A; is represented by RG;" for a; = resa,
and moreover [4;] € PS"(R). In [9], it was studied the situation that an
Azumaya algebra A that is represented by an epimorphic image of RG®
may also be obtained as the image of such a group ring which is moreover
itself an Azumaya algebra.
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In this section we find relationships between the Azumaya twisted group
rings RG® and RG] that represents A and A; respectively. We use Lemma
1 to discuss commutator subalgebras of each other. As an application
we study a situation that when a Schur algebra is represented by certain
twisted group ring which is itself an Azwmaya algebra.

For o € Z*(G,u(R)), an element x € G is said to be a-regular if
alg,z) = a(x, g) for all g € Cg(z) the centralizer of z. The set Z(G)y =
{z € Z(G)| = is o-regular} is called a root group of G with respect to «,
and this group plays an important role for RG® to be central. In fact, a
necessary condition for RG® to be central is that Z(G), is trivial. For an
abelian group, this condition is also sufficient.

LEMMA 7 ([9, Theorem 2.2}). For [A] € PS(R), we may assume that
it is given by an epimorphism RG® -+ A where Z(G)o, = 1. Hence if
[A] € PS"(R) then RG* itself is an Azumaya algebra.

THEOREM 8. Let G = Gy x G with (|G1},|G2|) = 1. fa € Z%(G,u(R))
and oy € Z%(G;,u(R)) is the restriction of o, then o is cohomologous to
a1 X &z S0 that the corresponding root groups are equal. Moreover we have
the following.

(1) Let z = 7122 € G with z; € G; (i = 1,2). Then z is a-regular if and
only if x; is a;-regular for i = 1,2.
(2) (ZG(G;)a = Z(G1)a X Z(G2)ay and G/Z(G)a = G1/Z(G1)a, % G2 /Z
2)on-

Proof. Define a map t: G — u(R) by g — a(g,92) for g = g1g2. Then

a(g, z)t(g)t(z) = algy, gez152)0{g2, Z122)a(z1, T32)
= afg1, T19272)(T192, T2)T1, g2) = t(gz) (o X az)(g, z),

where the second equality holds because of trivial pairing of Gi and Ga
[6, (2.3.14)]. Thus « is cohomologous to a1 x «g, and the c-regularity is
equal to the a; x as-regularity by [6, (3.6.1)], so that Z(G), corresponds
t0 Z(G)ay xay

For z = 2y, if z is a-regular and if a € Cg, (21} then za = z1azs =
azx1Z2 = az, thus a{x,a) = a(a,z). Moreover we have that

o1(z1, @)z, 25 1) = a(zr, !, @)a(z, 25 1) = ay(a, 71 )alz, 25 1),

hence z; is a;-regular, and similarly we get x5 is ag-regular.

Conversely, assume that &; is a;-regular and choose any g € & such that
zg = gr. Then z;9; = giz; and o;(z;, 9;) = o4{gi, zi) for ¢ = 1,2. Thus
(a1 x ag)(z, g) = a1(z1, g1)a2(x2, 92) = (1 X ag)(g, z), which proves that
z is (@ X ag)-regular, so that z is a-regular, this proves (1).



Decomposition of some central separable algebras 83

If ab € Z(G1)ay X Z(G2)a, for a € Z(G1)a, and b € Z{G3)q,, then we
have a € Z(G1),b € Z(Gz) and for any g1 € G1 and z3 € Ga, a1(a,q1) =
a1{g,a) and ao(b,z2) = as(za,b). Thus ab € Z(G1) x Z(Gy) = Z(Q).
Furthermore ab is o-regular because

(Cltl X C!z)(ab, l) = al(a, ll)az(b, lg) = al(ll, a)az(lg, b) = (Otl X O!z)(l,ab)

for any | = l1lp € G with [; € G;. Hence ab € Z(G)a,xa; = Z(G)a-

On the other hand, if g € Z(G)q, xa, then g € Z(G) and g is (a1 x a2)-
regular. Clearly g = g1¢92 € Z(G1) x Z(Ga), g is a-regular and g; is ;-
regular due to (1) hence it concludes that g = gi1g2 € Z(G1)a, X Z(G2)ay-
The remaining of (2) is clear. O

THEOREM 9. Let {A] € PS”(R) where A is represented by RG®. If
G = G1xGy such that (|G, |G2|) = 1 then A = A1 ® Ay where A and A; are
represented by Azumaya twisted group rings RN? and RNf ‘ respectively
for some finite groups N and N;. Moreover (RI\J“B)RN{31 = RN?2 and

(RNP)RNZ® — NP1,

Proof. Tt was proved in Theorem 5 that RG® = R(Gy x Gp)*1*22 =
RGT' @ RG5* where a; is the restriction of e to G; (¢ = 1,2). And A= 4;®
Az where each A; (i = 1,2) is given by epimorphism RG}* — A;. Moreover
since [A] € PS"(R), each {A;] belongs to PS”(R) for i = 1,2. Thus due
to Lemma 7 we may consider that the algebras A and A; are epimorphic
images of some twisted group rings which are Azumaya algebras.

In fact since [A] € PS”(R) we may assume that the representing twisted
group ring RG* for A is separable, ie., |G| € u(R). Thus if Z(G), is
trivial then RG” itself is central so that Azumaya. In case that Z(G), is
not trivial, we consider the quotient group G/Z(G), following the idea in
[9, (2.2)]. Then there is a 2-cocycle 8 € Z*(G/Z(G)q, u(R)) such that A
is given by epimorphism R(G/Z(G)s)® — A by Lemma 7. Replacing the
representing pair (G, a) by (G/Z(G)q, 8) and continuing this process, we
get a representation with trivial root group with respect to 3. If we denote
G/Z(G)a by N then A is an epimorphic image of RN®, Z(N)g = 1 and
RN# is an Azumaya algebra.

Since G = G x Gg with (|G|, |Gz|) = 1, it follows from Theorem 8 that
G/Z(Q)o = Gl/Z(Gl)al X G2/Z(G2)ay. Thus if we let N; = Gi/Z(G,;)ai
then N = N x Ny with (|N1],|Nz|) = 1. Regarding IV; as a subgroup of
N, let §; be the restriction of 3 to N;. Then it follows from Theorem 8
that 3 is cohomologous to B1 X 32 and Z(N)g = Z(N1)g, x Z(Na2)ga,.
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Because Z(N)gz is trivial, so are Z(N;)s, = 1 hence RNl’-B ‘ is an Azumaya
algebra. Moreover RN{B '® RNg 2 >~ RN? and the epimorphism RN? — A
gives rise to epimorphisms RNf © — A;, as is required.

As Azumaya algebras RN® and RN’ (i = 1,2), the isomorphism
RNP' @ RNP? = RNP is defined by un, ® Uny — UnyUny = B(n1,n2)un
for n = nyns € N by Theorem 5. Hence due to Lemma 1, the commutator
subalgebras are

A 8
(RNP)RNT' = RNJ? and (RNP)RM:* = RN,
this completes the proof. O

Finally we study a relationship between Schur and projective Schur al-
gebras. Clearly a Schur algebra is a projective Schur algebra with trivial
2-cocycle. Besides the trivial case, we may regard a Schur algebra as a pro-
jective Schur algebra with respect to non-trivial 2-cocycle « in the bijective
correspondence between projective representations of a finite group G and
ordinary representations of the covering group H of G. In this case o is
determined by a group extension H by G, however the values of o may not
contained in the ring R.

THEOREM 10. Let [A] € S(R) and f : RG — A be an epimorphism
with finite group G. Assume the center Z(G) # 1. Then there is a finite
group H, 2-cocycle a € Z2(H,u(R)) such that A is an epimorphic image
of RH* — A. Moreover if G = G x G with (|G1|,|G2|) = 1 then we have
the following.

(1) RH* = RHT" @ RH;*? for subgroups H; of H and restrictions a; of
a. Thus A; is an epimorphic image of RH such that A = A; ® As.

(2) Furthermore if [A] € S”(R) then from RH* — A, we may as-
sume RH® is central, if necessary, by taking quotient H/Z(H),, until
Z(H)q is trivial. Hence RH* are assumed to be Azumaya.

Proof. Consider a central group extension £ : 1 — Z(G) —» G —
G/Z(G) — 1. Then due to the well known correspondence between ordi-
nary representations of G and projective representations of G/Z(G), there
is an epimorphism on twisted group ring of G/Z(G) over R with respect to
a factor set A of the extension E. The factor set A € Z2(G/Z(G), Z(G)),
however the values of A need not belong to .

Regarding X as an element in Z2(G/Z(G),u(RZ(G))), it was proved in
[9] that RZ(G)(G/Z(G))* is isomorphic to RG, thus the same notation f
can be used for the map f : RZ(GHG/Z(G))* — A.
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For any z € Z(G), f(z) is central in A, hence in u(R). If we let = fA
then « belongs to Z2(G/Z(G),u(R)) thus we have a surjective homomor-
phism R(G/Z(G))* — A.

By setting G/Z(G) = H, (1) follows immediately from Theorem 5.
Moreover if [A] € §”(R) then the representing group algebra RG satisfies
|G| € w(R), thus by regarding [A] as in PS"(R) (2) follows from Theorem
9. a
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