COMPLETE SYSTEM OF FINITE ORDER FOR
CR MAPPINGS BETWEEN REAL ANALYTIC
HYPERSURFACES OF DEGENERATE LEVI FORM

SUNG-YEON KIM

ABSTRACT. We prove that the germ of a CR mapping f between real analytic real hypersurfaces has a holomorphic extension and satisfies a complete system of finite order if the source is of finite type in the sense of Bloom-Graham and the target is k-nondegenerate under certain generic assumptions on f.

Introduction

This paper is concerned with construction of a complete system for CR mappings and with the real analyticity and the finiteness of CR mappings between real analytic CR manifolds of degenerate Levi form.

Let M and M' be germs of real analytic(C^ω) real hypersurfaces in \mathbb{C}^{n+1} and \mathbb{C}^{N+1}, $1 \leq n \leq N$, respectively, and $F = (f^1, \cdots, f^{N+1}) : M \to M'$ be a continuously differentiable CR mapping. Then F is a solution of an overdetermined system

\[
\begin{align*}
L_i f_j &= 0 \quad i = 1, \ldots, n, \quad j = 1, \ldots, N + 1 \\
r' \circ F &= 0
\end{align*}
\]

(1)

where $\{L_i\}_{i=1,\ldots,n}$ is a basis of the CR structure bundle $H^{1,0}(M) := T^{1,0}(\mathbb{C}^{n+1}) \cap CT(M)$ of M and r' is a C^ω defining function of M'.

It is well known that if M and M' are Levi-nondegenerate hypersurfaces in \mathbb{C}^{n+1} and $F : M \to M'$ is a CR equivalence, then F extends holomorphically to a neighborhood of $M([12], [14], [16])$.

Moreover, F is determined by 2-jet at a point. This follows from the fact that F preserves the complete set of Chern-Moser invariants and thus

Received October 23, 1999.
2000 Mathematics Subject Classification: 32V10.
Key words and phrases: Cauchy-Riemann mapping, complete system, holomorphic extension.

The author was supported by KOSEF 98 of Korea Science and Engineering Foundation.
F satisfies the complete system of third order in the sense of Definition 5, see [5] and [7].

Let r be a $C^ω$ defining function of M such that $dr \neq 0$ on M and let $\{L_j\}_{j=1,2,\ldots,n}$ be a $C^ω$ basis of $H^{1,0}(M)$. For an n-tuple of integers $\alpha = (\alpha_1, \ldots, \alpha_n)$ let $L^\alpha := L_1^{\alpha_1} \cdots L_n^{\alpha_n}$. We say that M is k-nondegenerate at $p \in M$ if the vectors $\{L^\alpha r_Z(p) : |\alpha| \leq k\}$ span \mathbb{C}^{n+1}, where $r_Z = \left(\frac{\partial r}{\partial z_1}, \ldots, \frac{\partial r}{\partial z_{n+1}} \right)$.

The smallest such integer k does not depend on the choice of the basis L_1, \ldots, L_n and the defining function r. M is 1-nondegenerate at p if and only if M is of nondegenerate Levi form at p.

In this paper we study the analyticity and finite determination of CR mappings to $C^ω$ hypersurface which is k-nondegenerate at a reference point. Our main results are the following:

Theorem 1. Let M and M' be $C^ω$ real hypersurfaces through the origin of \mathbb{C}^{n+1} and \mathbb{C}^{N+1}, $1 \leq n \leq N$, respectively, and let $F : M \to M'$ be a CR mapping such that $F(0) = 0$. Let $\{L_j\}_{j=1,\ldots,n}$ be a $C^ω$ basis of $H^{1,0}(M)$. Suppose that M is of finite type at 0 in the sense of Bloom-Graham and M' is k-nondegenerate at 0. Suppose further that there exists a positive integer K such that

$$\{L^\gamma (r'_Z \circ F)(0) : |\gamma| \leq K\}$$

span \mathbb{C}^{N+1}. Then F extends holomorphically to a neighborhood of $0 \in M$ if $F \in C^K$.

Theorem 2. Let M and M' be $C^ω$ real hypersurfaces in \mathbb{C}^{n+1} and \mathbb{C}^{N+1}, $1 \leq n \leq N$, respectively as in Theorem 1 and let $F : M \to M'$ be a CR mapping as in Theorem 1. Then F is determined by $4K$-jet at 0. Moreover, F satisfies a complete system of order $4K + 1$.

If M and M' are of same dimension and k-nondegenerate, then a CR equivalence F between M and M' extends holomorphically to a neighborhood of M if F is sufficiently differentiable([6],[2]) and is determined by $(k^2 + k)$-jet at a point([7]). A basic idea in [7] is to construct, by differentiating (1) repeatedly, a complete system of finite order, which determines all the derivatives of F of order greater than or equal to $k^2 + k + 1$. More recently Zaitsev showed that F is determined by $4k$-jet at a point by using the Segre varieties([17]).
Suppose M and M' are in normal coordinates at 0 (see §2). Then (2) span \mathbb{C}^{N+1} if and only if the image

$$\{(a_1^K(z), \ldots, a_N^K(z)) : z \in \mathbb{C}^n\}$$

is not contained in a hyperplane of \mathbb{C}^N, where a_j^K, $j = 1, \ldots, N$, are K-th order Taylor series expansion of $\frac{\partial r^j}{\partial z_j}(F(z, 0), \overline{F(0)})$, $j = 1, \ldots, N$.

In [10], Hayashimoto showed using the method of complete system that if M and M' are real hypersurfaces in \mathbb{C}^{n+1} and if M' is of nondegenerate Levi form, then F extends holomorphically to a neighborhood of M and is determined by a finite jet at a point under the condition that the image

$$\{(a_1^K(z), \ldots, a_N^K(z)) : z \in \mathbb{C}^n\}$$

is not contained in a hyperplane of \mathbb{C}^n, which is equivalent to our hypotheses in Theorem 1.

In [2], Baouendi, Jacobowitz, and Treves replace the holomorphic structure on a neighborhood of M by a new one whose real analytic structure is the same as the standard one. Then they extend each f^j as a collection of holomorphic functions (in one variable in the case of hypersurface) to a wedge with edge M using some identity that involves CR vector fields and a defining function of M. By the edge of the wedge theorem F is real analytic on M and hence extends holomorphically to a neighborhood of M under the original holomorphic structure.

In this paper, we express F in terms of the derivatives of \overline{F} on M. We use this identity to prove Theorem 1 by the same argument as in §3 of [2]. To prove Theorem 2 we use the method of Segre variety as in [15], [1] and [17].

Holomorphic continuation of a CR mapping to a neighborhood of C^ω CR submanifold has been studied by many authors. In [3], Baouendi and Rothschild showed the holomorphic continuation of a CR mapping between C^ω real hypersurfaces of same dimension under certain nondegeneracy conditions.

To state their result we fix notations and definitions first:

Let $M = \{r = 0\} \subset \mathbb{C}^{n+1}$ be in normal coordinates. We can write $r((z, 0), (\overline{z}, 0)) = \sum a_\alpha(z)\overline{z}^\alpha$, where $z \in \mathbb{C}^n$. Then M is said to be essentially finite at 0 if the \mathbb{C}-vector space $\mathcal{O}[z]/(a_\alpha(z))$ is of finite dimension, where $(a_\alpha(z))$ is the ideal generated by $\{a_\alpha(z)\}$ in $\mathcal{O}[z]$. The essential type of M at 0 is the dimension of the complex vector space $\mathcal{O}[z]/(a_\alpha(z))$.

Suppose that $F : M \to M'$ is a C^K, $K \in \mathbb{N} \cup \{\infty\}$, CR mapping between C^∞ real hypersurfaces in \mathbb{C}^{n+1}. Then there exists a (formal) holomorphic change of coordinates on a neighborhood of M such that $F = J(Z) + O(|Z|^{K+1})$ if $K < \infty$ and $F = J(Z) + O(|Z|^{|l+1|}$ for all l if $K = \infty$, where
$Z = (z, z_{n+1}) \in \mathbb{C}^{n+1}$ and $J(Z) = (j_1(Z), ..., j_{n+1}(Z))$ is an $(n+1)$-tuple of (formal) holomorphic functions in Z. We say that F is of finite multiplicity at 0 if $\mathcal{O}[z]/(J(z,0))$ is of finite dimension. The multiplicity of F at 0 is defined by the dimension of the complex vector space $\mathcal{O}[z]/(J(z,0))$.

Theorem 3. ([3]) Let $F : M \to M'$ be a smooth CR mapping, where M and M' are C^ω hypersurfaces in \mathbb{C}^{n+1}. Let $0 \in M$ and $F(0) = 0$. If either one of the following two conditions is satisfied, then F is the restriction of a holomorphic mapping from a neighborhood of 0 in \mathbb{C}^{n+1} into \mathbb{C}^{n+1}.

i) The mapping H is of finite multiplicity at 0, and M' is essentially finite at 0.

ii) M is essentially finite at 0 and F satisfies

$$dF(\mathcal{C}T_0 M) \not\subset H_0^{1,0}(M') \oplus H_0^{0,1}(M')$$ (Hopf Lemma property).

From Theorem 1 and Theorem 2 we have the following

Corollary 4. Let $F : M \to M'$ be a CR mapping, where M and M' are C^ω hypersurfaces in \mathbb{C}^{n+1}. Let $F(0) = 0$. Suppose M' is k-nondegenerate at 0. Then F satisfies a complete system of finite order if one of the following conditions is satisfied:

i) The mapping F is of finite multiplicity at 0.

ii) M is essentially finite at 0 and F satisfies

$$dF(\mathcal{C}T_0 M) \not\subset H_0^{1,0}(M') \oplus H_0^{0,1}(M').$$ (5)

In case i) F satisfies a complete system of order $4k \cdot (\text{mult } F_0) + 1$ and in case ii) F satisfies a complete system of order $4k \cdot (\text{ess type } M_0) + 1$, where $(\text{mult } F_0)$ is the multiplicity of F at 0 and $(\text{ess type } M_0)$ is the essential type of M at 0.

After finishing this paper, the author was informed of the B. Lamel’s result[11], in which he proved the real analyticity of F in Theorem 1 in more general situation(generic CR manifolds) using ideas similar to ours.

The author thanks Professor Chong-kyu Han for introducing me the method of complete system and Segre variety and for many valuable discussions during the preparation of this paper.
1. E. Cartan’s equivalence problem and the complete systems

In this section we briefly explain E. Cartan’s equivalence problem and the notion of complete system.

For a C^∞ manifold M with a geometric structure, construct a principal fiber bundle P with the structure group G over M such that any structure preserving map f lifts to \tilde{f} for which the following diagram commutes:

\[
\begin{array}{ccc}
P_1 & \xrightarrow{f} & P_2 \\
\pi_{M_1} & \downarrow & \pi_{M_2} \\
M_1 & \xrightarrow{f} & M_2
\end{array}
\]

(6)

E. Cartan’s equivalence problem is to find necessary and sufficient conditions for the existence of \tilde{f}.

Suppose there exists a unique torsion-free connection ω on M. Then there is a unique vector-valued 1-form

\[
\omega : T(P) \to \mathbb{R}^K
\]

(7)

which is an isomorphism at each point, where $K = \text{dim}M + \text{dim}G = \text{dim}P$, such that there exists a local structure preserving map $f : M_1 \to M_2$ if and only if $\tilde{f}_* (\omega_2) = \omega_1$. Such ω is called a complete set of invariants for the equivalence problem. In this case, f satisfies

\[
\frac{\partial^2 f^a}{\partial x^i \partial x^j} = h^a_{ij} \left(x, f, \frac{\partial f^b}{\partial x^k} : b, k = 1, \ldots, n \right)
\]

for all $i, j = 1, \ldots, n$, where h^a_{ij} is a C^∞ function in its arguments.

The concept of complete system is the generalization of the equation (3). We define the notion of complete system in jet-theoretical setting using the same notations as in [13].

Let $J^q(M, \mathbb{R}^N)$ be the q-th order jet space of $M \times \mathbb{R}^N$. Consider a system of differential equations of order q for unknown functions $u = (u^1, \ldots, u^N)$ of independent variables $x = (x^1, \ldots, x^n)$

\[
\Delta_\lambda(x, u^{(q)}) = 0, \ \lambda = 1, \ldots, l,
\]

where $u^{(q)}$ is the q-th jet of u.

A complete system of order k is defined as follows.

Definition 5. We say that (4) satisfies a complete system of order k if there exist C^∞ functions $H^q_j(x, u^{(p)} : p < k)$ in their arguments such that for any C^k solution u of (4),

\[
u_j^q = H^q_j(x, u^{(p)} : p < k)
\]

(10)
for all \(a = 1, \ldots, N\) and for all multi-indices \(J\) with \(|J| = k\).

Let \(\phi^a_I = du^a_I - \sum_{j=1}^n u^a_{i,j}dx^j\), \(a = 1, \ldots, N\), \(|I| \leq k - 2\), be the contact 1-forms defined on \(J^{k-1}(M, \mathbb{R}^N)\) and \(S_\Delta \subseteq J^{k-1}(M, \mathbb{R}^N)\) be the zero set of (4) and the derivatives of (4) in the space of partial derivatives of \(u\) up to order \(k - 1\). If (4) satisfies a complete system of order \(k\), then \(f\) is a solution of (4) if and only if \(x \to (\frac{\partial^{|I|}}{\partial x^{|I|}}(x), |I| \leq k - 1)\) is a maximal integral manifold of the distribution
\[
\phi^a_I = 0, \quad a = 1, \ldots, N, \quad |I| \leq k - 2
\]
and
\[
du^a_I - \sum_{j=1}^n H^a_{i,j}dx^j = 0, \quad |I| = k - 1,
\]
where \(H^a_{i,j} = D_j H^a_i\). In particular, we have

Proposition 6. Suppose (4) satisfies a complete system of order \(k\), then a solution \(f\) of (4) is uniquely determined by \((k - 1)\)-jet at a point and is \(C^\infty\) if \(f \in C^k\). Furthermore, if (4) is \(C^\omega\), then each \(H^a_j\) is \(C^\omega\) and \(f \in C^\omega\).

2. Proof of theorems and corollary

Let \(M, M'\) and \(F\) be as in Theorem 1.

In this section we use \(\alpha, \beta, \gamma, \cdots\) for \(n\)-tuples of integers and \(\alpha', \beta', \gamma'\cdots\) for \(N\)-tuples of integers.

We say that \(M\) is in normal coordinates if \(M\) is defined by
\[
z_{n+1} = R(z, \bar{z}) + \bar{z}_{n+1}P(z, \bar{z}, \bar{z}_{n+1})
\]
where \(z \in \mathbb{C}^n\) and \(R, P\) are holomorphic in their arguments such that
\[
R(z, 0) \equiv R(0, \bar{z}) \equiv 0
\]
and
\[
P(z, 0, \bar{z}_{n+1}) \equiv P(0, \bar{z}, \bar{z}_{n+1}) \equiv 1. \quad ([3])
\]

Since the smallest integer \(K\) which satisfies the hypotheses of Theorem 1 is independent of choice of \(\{L_i\}_{i=1, \ldots, n}\) and defining function \(r'\), we may assume that \(M\) and \(M'\) are in normal coordinates.

Now assume that \(M'\) is defined by
\[
\zeta_{N+1} = R'(\zeta, \bar{\zeta}) + \bar{\zeta}_{N+1}P'(\zeta, \bar{\zeta}, \zeta_{N+1}),
\]
where \(\zeta \in \mathbb{C}^N\) and \(R', P'\) are holomorphic in their arguments such that
\[
R'(\zeta, 0) \equiv R'(0, \bar{\zeta}) \equiv 0
\]
and
\[
P'(\zeta, 0, \zeta_{N+1}) \equiv P'(0, \bar{\zeta}, \zeta_{N+1}) \equiv 1. \quad ([3])
\]
where $\zeta \in \mathbb{C}^N$. Write

$$ R'(\zeta, \overline{\zeta}) = \sum_{j=1}^N a_j(\overline{\zeta}) \zeta_j + \sum_{|\alpha'| \geq 2} a_{\alpha'}(\overline{\zeta}) \zeta^{\alpha'} .$$

Lemma 7. There exist Φ_j, $j = 1, \ldots, N+1$, which are holomorphic in their arguments such that

$$ f^j = \Phi_j(\overline{L'}F, |\gamma| \leq K) $$

for all $j = 1, \ldots, N+1$.

Proof. Let $F = (f, g) = (f^1, \ldots, f^N, g)$. Then we have

$$ g = \sum_{j=1}^N a_j(\overline{f}) f^j + \sum_{|\alpha'| \geq 2} a_{\alpha'}(\overline{f}) f^{\alpha'} + \overline{g}' P(f, \overline{f}, \overline{g}) $$

Applying $\overline{L'}$, $|\gamma| > 0$, to (15) we have

$$ 0 = \sum_{j=1}^N \overline{L'} a_j(\overline{f}) f^j + \sum_{|\alpha'| \geq 2} \overline{L'} a_{\alpha'}(\overline{f}) f^{\alpha'} + \overline{L'} \left(\overline{g}' P(f, \overline{f}, \overline{g}) \right) . $$

Since $\overline{L'} \overline{g}(0) = 0$ for all γ, we have

$$ \overline{L'} \left(r'_Z \circ F \right)(0) = (\overline{L'} a_1(\overline{f})(0), \ldots, \overline{L'} a_N(\overline{f})(0), 0) $$

for all γ with $|\gamma| > 0$.

By the hypothesis of Theorem 1, there exist γ_l, $l = 1, \ldots, N$, such that $|\gamma_l| \leq K$ and $\{\overline{L}'(r'_Z \circ F)(0)\}_{l=1,\ldots,N}$ together with $r'_Z \circ F(0) = (0, \ldots, 0, 1)$ span \mathbb{C}^{N+1}. Then by the implicit function theorem we can solve the system

$$ g = \sum_{j=1}^N a_j(\overline{f}) f^j + \sum_{|\alpha'| \geq 2} a_{\alpha'}(\overline{f}) f^{\alpha'} + \overline{g}' P(f, \overline{f}, \overline{g}) $$

$$ 0 = \sum_{j=1}^N \overline{L}' a_j(\overline{f}) f^j + \sum_{|\alpha'| \geq 2} \overline{L}' a_{\alpha'}(\overline{f}) f^{\alpha'} + \overline{L}' \left(\overline{g}' P(f, \overline{f}, \overline{g}) \right), $$

$l = 1, \ldots, N$, for f^j, $j = 1, \ldots, N$, and $g = f^{N+1}$ in terms of $\overline{L}'F$, $|\gamma| \leq K$. This implies that there exist Φ_j, $j = 1, \ldots, N+1$, which are holomorphic in their arguments such that

$$ f^j = \Phi_j(\overline{L}'F, |\gamma| \leq K) $$

for all $j = 1, \ldots, N+1$. \hfill \Box
Proof of Theorem 1
In [4], Baouendi and Treves showed that if M is of finite type in the sense of Bloom-Graham, then there is one side of M to which every CR distribution extends as a holomorphic function. Then by Lemma 7 together with Lemma 2.2 and Lemma 2.4 of [2] F is C^ω on M and hence extends holomorphically to a neighborhood of M.

Proof of Theorem 2
Let $\Phi = (\Phi_1, \cdots, \Phi_{N+1})$ and $Q(z, \bar{z}, \bar{z}_{n+1}) = R(z, \bar{z}) + \bar{z}_{n+1}P(z, \bar{z}, \bar{z}_{n+1})$. Since F is holomorphic on a neighborhood of M, we can write (14) as
\begin{equation}
F(z, Q(z, \bar{z}, z_{n+1})) = \Phi(j^K \bar{F}(z, \bar{z}_{n+1}), j^{K+1}Q(z, \bar{z}, \bar{z}_{n+1}))
\end{equation}
\begin{equation}
:= \Phi(z, \bar{z}, z_{n+1}, j^K \bar{F}(z, \bar{z}_{n+1})).
\end{equation}

Let $\bar{z} = \chi$ and $z_{n+1} = \chi_{n+1}$. Then we can extend (19) as
\begin{equation}
F(z, Q(z, \chi, \chi_{n+1})) = \Phi(z, \chi, \chi_{n+1}, j^K \bar{F}(\chi, \chi_{n+1})).
\end{equation}

Passing to the K-th jet and taking its complex conjugate, we have
\begin{equation}
J^K \bar{F}(\chi, Q(\chi, z, z_{n+1})) = \Phi^K(\chi, z, z_{n+1}, j^{2K} F(z, z_{n+1})),
\end{equation}
where Φ^K is holomorphic in its arguments.

Substituting for $J^K \bar{F}$ in (20), we have
\begin{equation}
F(w, Q(w, \chi, Q(\chi, z, z_{n+1}))) = \Psi(z, z_{n+1}, \chi, w, j^{2K} F(z, z_{n+1})),
\end{equation}
where Ψ is holomorphic in its arguments.

Also, we have
\begin{equation}
J^{2K} F(w, Q(w, \chi, Q(\chi, z, z_{n+1}))) = \Psi^{2K}(z, z_{n+1}, \chi, w, j^{4K} F(z, z_{n+1})),
\end{equation}
where Ψ^{2K} is holomorphic in its arguments.

On the other hand, we have
\begin{equation}
F(u, Q(u, \tau, Q(\tau, w, w_{n+1}))) = \Psi(w, w_{n+1}, \tau, u, j^{2K} F(w, w_{n+1})),
\end{equation}
where $u \in \mathbb{C}^n$.

Lemma 8. There exist $(p, p_{n+1}) \in \mathbb{C}^{n+1}$ sufficiently close to 0 and holomorphic functions $\chi = \chi(z, z_{n+1})$, $\tau = \tau(u, u_{n+1})$ defined on a neighborhood V of 0 such that
\begin{equation}
p_{n+1} = Q(p, \chi, \bar{Q}(\chi, z, z_{n+1}))
\end{equation}
and
\begin{equation}
u_{n+1} = Q(u, \tau, \bar{Q}(\tau, p, p_{n+1}))
\end{equation}
on V.

Proof. It's enough to show that there exist \((p, p_{n+1}) \in \mathbb{C}^{n+1}\) and \(\chi^0, \tau^0 \in \mathbb{C}^n\) which are sufficiently small such that

\[
(27) \quad \frac{\partial}{\partial \chi_j} \left[Q(p, \chi, \overline{Q}(\chi, z, z_{n+1})) \right] \bigg|_{(\chi^0, 0)} = \frac{\partial Q}{\partial \chi_j}(p, \chi^0, 0) \neq 0
\]

for some \(j = 1, \ldots, n\) and

\[
(28) \quad \frac{\partial}{\partial \tau_j} \left[Q(u, \tau, \overline{Q}(\tau, p, p_{n+1})) \right] \bigg|_{(0, \tau^0)} = \frac{\partial Q}{\partial \tau_j}(\tau^0, p, p_{n+1}) \neq 0
\]

for some \(j = 1, \ldots, n\). Then by implicit function theorem we can prove the lemma.

But

\[
\frac{\partial Q}{\partial \chi_j}(p, \chi^0, 0) = \frac{\partial R}{\partial \chi_j}(p, \chi^0)
\]

and

\[
\frac{\partial Q}{\partial \tau_j}(\tau^0, p, p_{n+1}) = \frac{\partial R}{\partial \tau_j}(\tau^0, p) + p_{n+1} \frac{\partial P}{\partial \tau_j}(\tau^0, p, p_{n+1}).
\]

Since \(M\) is of finite type in the sense of Bloom-Graham, \(R \neq 0\). Hence we can choose \((p, p_{n+1}) \in \mathbb{C}^{n+1}\) and \(\chi^0, \tau^0 \in \mathbb{C}^n\) sufficiently close to 0 which satisfy the above conditions.

Then substituting for \(\chi = \chi(z, z_{n+1})\) and \(\tau = \tau(u, u_{n+1})\) in (23) and (24), respectively, and substituting for \(J^{2K}F(p, p_{n+1})\) in (24), we have

\[
(29) \quad F(u, u_{n+1}) = H(J^{4K}F(z, z_{n+1}), z, z_{n+1}, \overline{z}, \overline{z}_{n+1}, u, u_{n+1}, \overline{u}, \overline{u}_{n+1}),
\]

where \(H\) is holomorphic in its arguments.

Passing through \((4K + 1)\)-jet and taking \((u, u_{n+1}) = (z, z_{n+1}) \in M\), we have

\[
(30) \quad J^{4K+1}F(z, z_{n+1}) = H'(J^{4K}F(z, z_{n+1}), z, z_{n+1}, \overline{z}, \overline{z}_{n+1}),
\]

where \(H'\) is holomorphic in its arguments.

Proof of Corollary 4

Let \(M\) and \(M'\) be as in Corollary 4. Suppose \(M\) is essentially finite at 0 and \(F : M \to M'\) satisfies

\[
(31) \quad dF(CT_0M) \not\subseteq H^{0,0}_0(M') \oplus H^{0,1}_0(M') \quad \text{(Hopf Lemma property)}.
\]

In [3], Baouendi and Rothschild showed that \(F\) is of finite multiplicity at 0 and

\[
(32) \quad (\text{ess type } M_0) = (\text{mult } F_0) \cdot (\text{ess type } M'_0).
\]
If M' is k-nondegenerate at 0, then
\begin{equation}
\mathcal{O}[\zeta]/(a_\alpha(\zeta)) = \mathcal{O}[\zeta]/(\zeta_1, \cdots, \zeta_n).
\end{equation}
Hence (ess type $M'_0) = 1$ and (mult $F_0) = (\text{ess type } M_0$).

Thus to prove Corollary 4, it's enough to show that if F is of finite multiplicity at 0, then M is of finite type and
\begin{equation}
\{ L^\gamma (r'_Z \circ F)(0) : |\gamma| \leq K \}
\end{equation}
span \mathbb{C}^{n+1}, where $K = k \cdot (\text{mult } F_0)$.

Let $F = (f, g) = (f^1, \cdots, f^n, g)$ and (z) be the ideal of $\mathcal{O}[z]$ generated by z.

Lemma 9. If F is of finite multiplicity at 0, then
\begin{equation}
det \left(\frac{\partial}{\partial z_i} h^j(z, 0) \right)_{i,j=1,\ldots,n} \neq 0,
\end{equation}
where h^j, $j = 1, \ldots, n$, are the (mult F_0)-th order Taylor series expansion of f^j.

Proof. Since we only deal with the Taylor series expansion of F, we may regard that F is smooth.

Since M and M' are in normal coordinates, $\frac{\partial^{\mu}g}{\partial z^\alpha}(0) = 0$ for all α. Hence F is of finite multiplicity at 0 if and only if
\begin{equation}
dim_{\mathbb{C}} \mathcal{O}[z]/(f^1(z, 0), \cdots, f^n(z, 0)) = d < \infty,
\end{equation}
where $d = (\text{mult } F_0)$.

Now let $z^{\alpha} \in (z)^d$. We denote $\beta = (b_1, \cdots, b_n) < \alpha = (a_1, \cdots, a_n)$ if $b_j \leq a_j$ for all $j = 1, \ldots, n$ and $\beta \neq \alpha$.

If $|\alpha| \geq d$, then we can choose $\beta_l, l = 1, \ldots, d$, such that $0 < \beta_1 < \beta_2 \cdots < \beta_d = \alpha$. Suppose $z^{\alpha} \notin (f^1(z, 0), \cdots, f^n(z, 0))$. Then
\begin{equation}
sp < \{1, z^{\beta_l} : l = 1, \ldots, d\} > \cap (f^1(z, 0), \cdots, f^n(z, 0)) = \{0\},
\end{equation}
where $sp < \{1, z^{\beta_l} : l = 1, \ldots, d\} >$ is the \mathbb{C}-vector space spanned by $\{1, z^{\beta_l} : l = 1, \ldots, d\}$. Thus
\[
d = \dim_{\mathbb{C}} \mathcal{O}[z]/(f^1(z, 0), \cdots, f^n(z, 0))
= \dim_{\mathbb{C}} sp < \{1, z^{\beta_l} : l = 1, \ldots, d\} >
+ \dim_{\mathbb{C}} sp < \{z^\gamma : \gamma \neq \beta_l, l = 1, \ldots, d\} > / (f^1(z, 0), \cdots, f^n(z, 0))
\geq d + 1.
\]
Hence we conclude that
\begin{equation}
(z)^d \subset (f^1(z, 0), \cdots, f^n(z, 0)).
\end{equation}
Then we have
\[(h^1(z,0), \ldots, h^n(z,0)) \subset (f^1(z,0), \ldots, f^n(z,0)) + (z)^{d+1}\]
\[\subset (f^1(z,0), \ldots, f^n(z,0))\]
and
\[(39) \quad f^j(z,0) - h^j(z,0) \in (z)^{d+1} \subset (z) \cdot (f^1(z,0), \ldots, f^n(z,0))\]
for all \(j = 1, \ldots, n\). Thus by Nakayama's Lemma (see [3])
\[(40) \quad (h^1(z,0), \ldots, h^n(z,0)) = (f^1(z,0), \ldots, f^n(z,0)),\]
which implies
\[(41) \quad \dim_{\mathbb{C}} \mathcal{O}[z]/ (h^1(z,0), \ldots, h^n(z,0)) < \infty.\]
But in [3], it is proved that (35) holds if (41) holds. \(\square\)

Let \(h = (h^1, \ldots, h^n)\). By Lemma 9 we can show by following the same argument of the proof of Theorem 2 of [3] with \(h\) in place of \(F\) and with \(n = \text{modulo } (\xi)^{k(\text{mult } F_0)+1} \cdot (z)^{\text{mult } F_0+1}\) in place of \(n = \text{modulo } (\xi)^{k(\text{mult } F_0)+1}\) that \(M\) is essentially finite at 0 and hence of finite type at 0.

Now suppose there is a vector \(s = (s_1, \ldots, s_n) \in \mathbb{C}^n\) such that
\[(42) \quad \sum_{j=1}^{n} s_j a_j(h)(z,0) \equiv 0.\]
By Lemma 9 there exists \(z_0 \in \mathbb{C}^n\) sufficiently close to 0 and a neighborhood \(U\) of \(z_0\) such that \(h(\cdot,0): U \rightarrow h(U,0) \subset \mathbb{C}^n\) is a biholomorphic map onto an open set \(h(U,0)\) of \(\mathbb{C}^n\). Thus
\[(43) \quad \sum_{j=1}^{n} s_j a_j(\zeta) \equiv 0\]
for all \(\zeta \in h(U,0)\). But \(\sum_{j=1}^{n} s_j a_j(\zeta)\) is holomorphic in \(\zeta\), \(\sum_{j=1}^{n} s_j a_j(\zeta) \equiv 0\) on \(\mathbb{C}^n\).

Let
\[(44) \quad L'_j = \frac{\partial}{\partial \zeta_j} - \frac{r'_j}{r'_{n+1}} \frac{\partial}{\partial \zeta_{n+1}}, \quad j = 1, \ldots, n,\]
where \(r'_j = \frac{\partial r'}{\partial \zeta_j}, \quad j = 1, \ldots, n + 1\). Since \(M'\) is in normal coordinates, we have
\[(45) \quad r'_2'(0) = (0, \ldots, 0, 1)\)
and
\[
L'_{\gamma}(r_Z'(0)) = \left(\frac{\partial |\gamma| a_1}{\partial \zeta'}(0), \ldots, \frac{\partial |\gamma| a_n}{\partial \zeta'}(0), 0 \right)
\]
for all $|\gamma| > 0$.
This implies that M' is k-nondegenerate at 0 if and only if
\[
\sum_{j=1}^{n} \bar{s}_j a_j(\zeta) \neq 0
\]
for all $\bar{s} = (\bar{s}_1, \ldots, \bar{s}_n) \neq 0$. Hence we conclude that
\[
\sum_{j=1}^{n} s_j a_j(h)(z, 0) \equiv 0
\]
if and only if $s = 0$.

Now let
\[
a_j(f)(z, 0) = \sum_{\alpha} c_{\alpha} z^{\alpha}
= \sum_{|\alpha| = m_j} c_{\alpha} z^{\alpha} + \sum_{|\alpha| > m_j} c_{\alpha} z^{\alpha},
\]
where $\sum_{|\alpha| = m_j} c_{\alpha} z^{\alpha} \neq 0$. Then $a_j(f)(z, 0) \equiv a_j(h)(z, 0)$ modulo T^{m_j+1}.
Hence if $\sum_{j=1}^{n} s_j a_j(h)(z, 0) \neq 0$, then $\sum_{j=1}^{n} s_j a_j(f)(z, 0) \neq 0$ modulo T^{m+1}, where $m = \max(m_1, \ldots, m_n) \leq k \cdot (\text{mult } F_0)$, which implies that the image
\[
\left\{ (a_1^K(z), \ldots, a_n^K(z)) : z \in \mathbb{C}^n \right\}
\]
is not contained in a hyperplane of \mathbb{C}^n for $K = k \cdot (\text{mult } F_0)$ or equivalently
\[
\left\{ \mathcal{T}^{\gamma} (r_Z' \circ F)(0) : |\gamma| \leq K \right\}
\]
span \mathbb{C}^{n+1}, where $K = k \cdot (\text{mult } F_0)$.

References

Department of Mathematics
Pohang University of Science and Technology
Pohang 790-784, Korea
E-mail: sykim@euclid.postech.ac.kr