• Published : 2001.01.01


For a linear operator Q from R(sup)d into R(sup)d and 0$\alpha$ and parameter b on the other. characterization of strictly (Q,b)-semi-stable distributions among (Q,b)-semi-stable distributions is made. Existence of (Q,b)-semi-stable distributions which are not translation of strictly (Q,b)-semi-stable distribution is discussed.



  1. Nagoya Math.J. v.134 Criteria for recurrence and transience of semistable processes G.S.Choi
  2. Bull.Korean.Math.Soc. v.37 Representation of operator semi-stable distributions
  3. Proc.Japan Acad. v.71 Ser A Recurrence and transience of operator semi-stable processes G.S.Choi;K.Sato
  4. Teor.Verojatnost.i Primenen v.31 Operator-semistable distributions on Rd, V.Chorny
  5. English translation, Theory Prob.Appl. v.31 Operator-semistable distributions on Rd V.Chorny
  6. Studia Math. v.61 Semi-stable probability measures on RN R.Jajte
  7. Operator-Limit Distributions in Probability Theory Z.J.Jurek;J.D.Mason
  8. Teor.Verojatnost.Primenen v.17 On the extension of the class of stable distributions V.M.Kruglov
  9. English translation, Theory Probab.Appl. v.17 On the extension of the class of stable distributions V.M.Kruglov
  10. Theorie de l'addition des variables aleatoires(2e ed.) P.Levy
  11. Collop.Math. v.45 Operator semi-stable probability measures on RN A.Luczak
  12. Corrigenda v.52 Operator semi-stable probability measures on RN A.Luczak
  13. Tokyo J.Math. v.23 Completely operator semi-selfdecomposable distributions M.Maejima;K.Sato;T.Watanabe
  14. Technical Report Series no.54 Lectures on multivariate infinitely divisible distributions and operator-stable processes K.Sato
  15. J.Multivar.Anal. v.22 Strictly operator-stable distributions
  16. Nagoya.Math.J. v.97 Completely operator-selfdecomposable distributions and operator-stable distributions K.Sato;M.Yamazato
  17. Trans.Amer.Math.Soc. v.136 Operator-stable probability distributions on vector groups M.Sharpe
  18. Ann.Inst.Statist.Math. v.22 On the domain of partial attraction of semi-stable distributions R.Shimizu
  19. Nagoya Math.J. v.132 Oscillation of modes of some semi-stable Levy processes T.Watanabe