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CHARACTERIZATIONS OF A KRULL RING R[X]

Gyu WHAN CHANG

Dedicated to my father WHA S1K CHANG

ABSTRACT. We show that R[X] is a Krull (resp. factorial) ring if
and only if B is a normal Krull {resp. factorial} ring with a finite
number of minimal prime ideals if and only if R is a Krull (resp.
factorial) ring with a finite number of minimal prime ideals and
Rps is an integral domain for every maximal ideal M of R. As a
corollary, we have that if R[X] is a Krull (resp. factorial) ring and
if D is a Krull (resp. factorial) overring of R, then D[X] is a Krull
{resp. factorial) ring.

1. Introduction

Throughout this paper, R denotes & commutative ring with identity,
T(R) its total quotient ring. Z(R) will be the set of zero divisors in R.
An overring of R is a ring between R and T(R). For technical reason we
assume that R C T(R). An element which is not a zero divisor is said
to be regular and an ideal is called a regular ideal if it contains a regular
element. A ring R is called a Marot ring if each regular ideal of R is
generated by its set of regular elements (cf. [4, Ch. 7]). For a fractional
ideal A of R, let A~! = {x € T(R)jrA C R} and A, = (A™1)71. A
fractional ideal A is divisorial if A = A,,.

It is well known that R is a Xrull (resp. factorial} domain if and only
if R[X] is a Krull (resp. factorial) domain. Anderson et al. {1, p.113]
gave a factorial ring R (and hence a Krull ring) such that R[X] is not
a Krull ring (and hence not a factorial ring). In [1, Theorem 5.7], they
also showed that R[X] is a Krull ring if and only if R is a finite direct
sum of Krull domains. Anderson and Markanda [2] showed that R is a
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finite direct sum of UFDs if and only if R[X] is a UFR if and only if
R[X] is a factorial ring.

In this paper, we will prove that R[X] is a Krull (resp. factorial)
ring if and only if R is a normal Krull (resp. factorial) ring with a
finite number of minimal prime ideals if and only if R is a Krull (resp.
factorial) ring with a finite number of minimal prime ideals and Ry; is
an integral domain for every maximal ideal M of R. As a corollary, we
have that if R[X] is a Krull (resp. factorial) ring and if D is an overring
of R, then D is a Krull {resp. factorial) ring if and only if D[X] is a
Krull (resp. factorial) ring. Moreover, if R is a reduced Noetherian ring
and if D is a Krull overring of R, then D{X] is a Krull ring. We also
show that if R is a regular Noetherian ring, then R[X] is a Krull ring.
For undefined notations and definitions, the reader can be referred to
[4, 5, 6].

2. Main Results

Recall from [6, p.116] that a ring R is said to be normal if Rp is
an integrally closed domain for each prime ideal P of R. It is easy to
show that R is a normal ring if and only if R[X] is a normal ring (cf.
[6, Proposition 17.B(2)]). R is said to be reduced if it has no nonzero
nilpotent elements. It is clear that for each maximal ideal M of R, if
Ry is an integral domain then R is a reduced ring. Thus a normal ring
is reduced. '

LEMMA 1. (cf. [5, Theorem 168]} A ring R has a finite number of
minimal prime ideals and R is an integral domain for every maximal
ideal M of R if and only if R is a finite direct sum of integral domains.

Proof. (=) Let {P1,..., P} be the set of minimal prime ideals of R.
Let M be a maximal ideal of K. Since Rjs is an integral domain, M
contains exactly one of the F;’s. Thus if ¢ # j, then F; + P; = R. Note
that R is reduced since Ry is an integral domain for each maximal ideal
M of R, that is, P,N--- NP, = 0. By the Chinese Remainder Theorem,

(<) By a localization technique, we have that Rjs is an integral
domain for every maximal ideal M of R. It is clear that R has a finite
number of minimal prime ideals. O

Let P be a prime ideal of R contained in a maximal ideal M of R.
Since Rp = (R_M)PRM; if Ry is an integral domain, so is Rp. Thus Ry
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is an integral domain for every maximal ideal M of R if and only if Rp
is an integral domain for every prime ideal P of R.

LEMMA 2. Let R be a ring such that Rp is an integral domain for
each maximal ideal P of R and let D be an overring of R. If M is a
maximal ideal of D, then Dy is an integral domain.

Proof. Let P = M N R. Note that Rp is an integral domain and
Rp — DR,p — T(Rp) Thus DR_p and hence DM = (DR—P)MDR_}D
is an integral domain. O

A ring R is called a Krull ring if there is a family {V,} of rank one
discrete valuation rings {DVR) such that R = N,V, and the intersection
has finite character, or equivalently R is completely integrally closed and
the ascending chain condition on regular divisorial ideals holds.

TueoreEM 3. (cf. {1, Theorem 5.7]) The following conditions are
equivalent.

(1) R is a finite direct sum of Krull domains.

(2} R[X] is a Krull ring.

(3) RI[X] is a normal Krull ring.

(4) R is a normal Krull ring with a finite number of minimal prime
ideals.

(5) R is a Krull ring with a finite number of minimal prime ideals and
Ry is an integral domain for every maximal ideal M of R.

Proof. (1) ¢« (2): This is {1, Theorem 5.7].

(3) = (2) and {4) = (5): These are clear.

(1) = (4): Let R = D1 ® -+ & Dy, where D;’s are Krull domains.
Since each prime ideal ) of Ris of the form D1 &--- & P& ---H D, and
Rg = (D;)p, where P is a prime ideal of I);, R is a normal Krull ring
with a finite number of minimal prime ideals {0&® Dy .- & D,,, D1 @ 0&
Do®---®Dyn,....,D1®---& D, &0}

() = (1): Let {P,...,P,} be the set of minimal prime ideals of
R. By Lemma 1, R = (R/P))® --- @ (R/P,). Since R is reduced,
Z(R) = U"_, P; [4, Lemma 4.8] and R is a Marot ring [4, Theorem 7.2].
Thus the set X!(R/P;) of height-one prime ideals of R/P; is {P/F|
reg-htP= htP = 1 and P, C P}. We claim that each R/P; is a Krull
domain.

Claim 1. For each P/P, € X'(R/F;), (R/F;)p;p, is a rank one DVR.
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Proof. Since R is normal, P,Rp = 0. Hence Rp = Rp/P;Rp =
(R/P;)p/p,. Since R is a Marot Krull ring and reg-htP =1, P ¢ PP~!
[4, Theorems 8.4 and 8.6]. Since Rp = (PP~Y)Rp = (PRp)(P~'Rp) C
(PRp)(PRp)™' C Rp, PRp is invertible. Thus Rp = (R/P)p;p, is a
rank one DVR.

Claim 2. R/Pi = ﬂ{(R/P@)p/pJP/Pi S XI(R/PZ)}

Proof. It is enough to show that each prime t-ideal of R/F; is of
height-one [3, Ex. 22, p.52]. Let Q/F; be a prime ideal of R/F; such
that ht(Q/F;} > 2. Then Q is a regular prime ideal of R and htQ=
reg-ht@ > 2 (note that R is reduced). Since R is a Krull ring, there are
some elements a,b € @ with a regular such that {a,b), = R.

Let@=a+ P, b=>b+ P, € R/P; and let £ € T(R/P;) such that
%(‘a’,B) C R/P; where z,y € Rand T =2+ F;, =y -+ F;. Since T # 0,
z ¢ P;. Hence (P, z) € Z(R). Thus (P;,z) is a regular ideal of B. Take
a regular element ' € (P;,z). Then 2’ = xr + p for some r € R and
p € P;. Soz'+ P; = rz + B;, which implies that () = Z = £. Since
(L)@ b) S R/P, Yac Rand Lbe R. So &5 € (a,b)”' = R. Thus
(@,b)"! = R/P;, and (Q/P;}; = R/P;, which shows that each prime
t-ideal of R/F; is of height-one.

Claim 3. The intersection R/P; = N{(R/P;)p;p,|P/P; € XY (R/PF;)}
has finite character.

Proof lLet @ = a + P; be a nonzero element of R/FP;. Then (F;,a)
is a regular ideal of R. Hence there exist a finite number of regular
height-one prime ideals of R containing (F;,a) (note that R is a Krull
ring). Thus the number of height-one prime ideals of R/P; containing @
is finite.

By Claims 1, 2, and 3, R/FP; is a Krull domain.

(4) = (3): If R is a normal Krull ring with a finite number of minimal
prime ideals, then R is a finite direct sum of Krull domains by ((5) =
(1)). Thus R{X] is a Krull ring. Since R is normal, R[X] is a normal
Krull ring. a

COROLLARY 4. Let R be a Noetherian ring. Then R is a normal ring
if and only if R[X] is a Krull ring.

Proof. Note that an integrally closed Noetherian ring is a Krull ring
[4, Theorem 10.1], and that the number of minimal prime ideals of a
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Noetherian ring is finite {cf. [5, Theorem 88]). Thus the result follows
from Theorem 3. O

It is clear that if D is an overring of R, then R and D have the
same number of minimal prime ideals (if R is an integral domain then
the minimal prime ideal of R is (0)). Thus the following result is an
immediate consequence of Lemnma 2 and Theorem 3.

COROLLARY 5. Let R[X] be a Krull ring and D be an overring of R.
Then D is a Krull ring if and only if D[X] is a2 Krull ring.

A ring R satisfies Property A if each finitely generated ideal I C Z(R)
has nonzero annihilator. [5, Theorem 82] shows that a Noetherian ring
satisfies Property A. It follows from [4, Corollary 2.6] that each overring
of a Noetherian ring satisfies Property A.

COROLLARY 6. Let R be a reduced Noetherian ring and let R’ be
the integral closure of R. Then R'[X] is a Krull ring. Moreover, if D is
a Krull overring of R, then D[X} is a Krull ring.

Proof. Since R is a reduced Noetherian ring, R’ is a reduced inte-
grally closed ring satisfying Property A. By [4, Theorem 13.11], R'[X] is
integrally closed. Hence R'[X] is the integral closure of R[X]. Since R
is a Noetherian ring, so is R[X]. Thus R'[X] is a Krull ring [4, Theorem
10.1]. Moreover, if D is a Krull overring of R, then D is an overring of
R'. Thus by Corollary 5, D[X] is a Krull ring. a

Let R be a local Noetherian ring with maximal ideal M. Note that
M/M? is an R-module annihilated by M and hence a vector space over
the field B/M. Recall from [5, p.116] that R is a regular local ring if
dimR/M(M/Mz) = dimR, where dimg/p; (M/M?) is the dimension of a
vector space M/M? over R/M and dimR is the Krull dimension of R.
A Noetherian ring R is called a regular ring ff Rp is a regular local ring
for every prime ideal P of R [6, p. 140].

Since a regular local ring is a UFD [6, Theorem 48], a regular domain
is an integrally closed Noetherian domain and hence a Krull domain [5,
Theorems 103 and 104].

COROLLARY 7. If R is a regular ring, then R is a finite direct sum of
Krull domains. Thus R[X] is a Krull ring.
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Proof. Since R is a regular ring, R is a finite direct sum of integral
domains {5, Theorem 168]. By a localization technique, we can easily
show that each direct summand of R is a regular domain and hence a
Krull domain. O

A ring R is a unique factorization ring (UFR) if every principal ideal of
R is a product of principal prime ideals and a ring R is called a factorial
ring if each regular element of R is a product of (regular} prime elements.
Hence a UFR is a factorial ring and a factorial ring is a Krull ring,.

TueoreM 8. (cf. [1, Corollary 5.8]) The following conditions are
equivalent.

(1) R is a finite direct sum of UFDs.

(2) R[X] is a UFR.

(3} R[X] is a factorial ring.

(4) R[X] is a normal UFR.

(5) R[X] is a normal factorial ring.

(6) R is a normal factorial ring with a finite number of minimal prime
ideals.

(7) R is a factorial ring with a finite number of minimal prime ideals
and Ry is an integral domain for every maximal ideal M of R.

Proof. (1) & (2) < (3) and (4) < (5): These are in (1, Corollary
5.8].

(4) = (2) and (6) = (7): These are clear.

(3) = (5): Since a factorial ring is a Krull ring, R[X] is normal by
Theorem 3.

(3) = (6): By Theorem 3, R is a normal Krull ring with a finite
number of minimal prime ideals. Since R[X] is a factorial ring, so is R.
Thus R is a normal factorial ring with a finite number of minimal prime
ideals.

(7) = (1): By Theorem 3, R is a finite direct sum of Krull domains.
Let R = D1 @-- - @ D,. We show that each IJ; is a UFD. Let P be a prime
ideal of D; and let a be a nonzero element of P. Then (1,...,q,...,1)
is a regular element of R. Since R is a factorial ring, (1,...,4a,...,1)
is a finite product of prime elements of K. Hence a is a finite product
of prime elements of ;. Thus P contains a prime element of [); and
hence D; is a UFD by [5, Theorem 5]. O

The following corollary follows directly from Lemma 2 and Theorem
8.
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COROLLARY 9. Let R[X] be a factorial ring and D be an overring of
R. Then D is a factorial ring if and only if D[X] is a factorial ring.
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