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MAX-MIN CONTROLLABILITY OF
DELAY-DIFFERENTIAL GAMES IN HILBERT SPACES

Yonc Han Kang, JIN MuN JEONG, AND JONG YEQUL PARK

ABSTRACT. We consider a linear differential game described by the
delay-differential equation in a Hilbert space H; :

d 0
asc(t) = Apz(t) + Arz{t — h) + / a(s)Asz(t + s)ds
—h

() + B{@)u{t) + C{t)v(t) a.e. £ >0

I(U) = gU: I(S) = gl(s) € {—h,,O),
where g = (g%, ¢") € Ma = H x La([—h,0);Y), u € L*(R";U),v €
LY¥(RT; V), U and V are Hilbert spaces, and B(t) and C(t) are families
of bounded operators on U/ and V to H, respectively. Ag generates an
analytic semigroup T(t} = ™ in H.

The control variables g,u and v are supposed to be restricted in
the norm bounded sets {g : ||glia, < o}, {u : ||u||Lo(o;0y < 8} and
{v : Jlwlleyqo.gvy € 7} (p. 8,7 = 0). For given 2° € H and a given
time ¢ > 0, we study e- approximate controllability to determine z(-)
for a given g and »(-) such that the corresponding solution z(t) satisfies
llz(t) — 2°|| < € (e > 0 :a given error).

0. Introduction

In the Euclidean space, various types of differential games of pursuit and
evasion have been studied extensively (cf. Hajek[4]). Qur main concern is
to study max-min controllability problems in games theory, where we are
concerned with selection of pursuer’s controls from an admissible set against
evader’s controls. The max-min controllability has been investigated by
Chan and Li[l] in the Euclidean space and in the Banach space, Park
et al.[6] were studied in the case Ay generates a Cp-semigroup and As(-)
instead of a(s)As in (*) is in Ly([~A, 0}; £{X)). But we deal with the case
that Ao generates an analytic semigroup, a(-) € L#([—h,0}; R). and Ay €
L(Y,Y*). Recently, this system has been studied by many authors[3,5].
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Here controls are assumed to belong to some norm bounded constraint
sets and in such constraint sets, we want to find these controls steering a
given initial state to « desired state. In this paper, we stu iy the existence of
optimal solutions which are the minimum of control tunes and the minimum
norm of controls for the delay-differential equation (*). We derive necessary
and sufficient conditions for a max-min controllability problem in game
theory. :

1. Preliminaries

We give the description of a linear delay-differential game in a Hilbert
space. Let C' and R be the sets of complex and real numbers, respectively
and let B be the set of non-negative numbers. Let {2 be bounded smooth
on R" and Y = H}(Q),H = L#(). The norms of H,Y and the inner
product of H are denoted by |-{,{|- |l and (-,-) respectively. By identifying
the antidual of H with H we may consider ¥ «— H = H* — Y*. The norm
of the dual space Y* is denoted by || - ||..

We consider a linear game described by an abstract delay-differential
system(s) on H;

dz(t)

(1.1) -

= Apz(t) +Aiz(t ~ h)+ [°, a(s)Asa(t + s)ds
+B(tu(t) + C(t)v(t),a.e. t > 0.

(1.2) z(0) = ¢°, z(s) = g'(s) ae. s € [_hl 0).

where ¢ = (g% ¢') € My = H x La([-h,0;Y),u € LY(RYU),v €
LYY(RY V), {B(t) : t > 0} C L(U,H) is a strongly continuous family
of bounded operators from U into H, {C(t);t > 0} C L(V,H) is also a
strongly continuous family of bounded operators from V into H, Ay gen-
erates an analytic semigroup 7(t) = €' both in H and Y™* and that
T(t): Y* - Y for each t > 0 and 7 is a stielijes measure given by

: 0
(13)  n(s) = —x(cooi(s)A1 / a(6)dEAs Y — Y*,s € [<h, 0],
8
where X(_oo,—p)(-) denotes the characteristic function of (—oo, ~h].

0
The delayed terms in (1.1) are written simply by f dn(s)z(t + s).
h

Let a(z1,22) be a bounded sesqulinear form defined in ¥ x ¥ satisfying
Géarding’s inequality

(1.4) Re a(z,z) > ool|z||* - erlz[?,
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where ¢g and ¢y are real constants. LetAgy be the operator associated with
the sesquilinear form

(1.5) (z1, Agze) = —a(za,21),21,22 € Y,

where (-, )y,y+« denotes also the duality pairing between Y and Y*. The
operator Ay is bounded linear from Y into Y*. The realization of Ag in H,
which is the restriction of Ap to the domain D(Ag) = {z €Y : Agz € H}
is also denoted by Ay.

Throughout this paper it is assumed that each A;(¢ = 1,2} is bounded
and linear from Y to Y™* (ie. A; € L(Y,Y™)) such that A; maps D(Agp)
endowed with the graph norm of Ay to H continuously. The real valued
scalar function a(s) is assumed to be L2-integrable on [—h, 0], that is a(-) €
L?*([~h,0]; R). Let W{(t) be the fundamental solution of (s), which is a
unique solution of the equation

(1.6)  W(t) _ { g(t) + [IT(t — ) [°, dn(©W (€ + s)ds, t >0,

t<0
l.e.
(1.7)
W(e) = { Tty + Jo(AW (s — h) + [°, a(0) AW (0 + s)do)ds, t>0
“ 1o, t<0.

Then W(t) € L(H) for each t > 0 and W(t) is strongly continuous in
Rt = [0,00) and AW (t) and %W(t) are strongly continuous except at
t =nh,n=0,1,2,.... Therefore we may assume that

(1.8) |W(t)| < M,t >0, where M is a constant.

The solution of (1.1) is expressed by
(1.9) :
W (t)g® + [°, Ui(s)g (s)ds + [ W (¢t — s)B(s)u(s)ds
z(t, 9. u,v) =S + [FW(t—s)C(s)u(s)ds,t > 0
g (t),a.et € [—h,0),

where

(1.10) U(s)=W({t —s-—h)A1 + fsh W(t — s+ o)a(o)de

is well defined and is an element of C(R*; H).

The function x(t) = z(t,g,u,v) is a unique solution of the integrated
form of (1.1), (1.2) by T'(#). In this sense z(t) is called the mild solution
of the system(s). In the system (s), u(t),v(t) and (g% g'(s)) are called
a pursuer’s confrol, an evader’s control on forcing term and an evader’s
control on initial data, respectively.
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The state space My = H x Ly([—h,0]; ) of the system (s) is the product
reflexive space with the norm

0
1
A1) ol = G+ [ l1g'1Pds), = (6°,01) € o

The dual space My of M, is identified with the product space H x L2([—h, 0};
Y*) = H x La([—h,0]; Y)* via the duality pairing

0
012 @ =6+ [ 66 e s,

where g = (9%,6') € Mz, f = (f% ") € M3 and (,-)y,y- denotes the
duality pairing between Y and Y*. Here we note that the pairing (-, )y v~
is assumed to satisfy {¢°,af%) = (ago, f°) for a € C,(g°, %) € H x H,a
being the conjugate of @. We denote the norm in Y™* by || - ||«. For more
detailed structural properties of the equations (1.1), (1.2) on the space Ma,
we refer to [3].

2. Max-Min controllability

In this section, we study a max-min controllability problem which is
noncooperative in the sense that against one evader’s controls, the other
pursuer can select an appropriate control. For each £ > 0,0 > 0,y > 0, we
define constraint sets

21)  Ub={ue Lp((0,thU) : |lullajog = ( [ fu(s) 2 ds)? < 8},

@2 Vi={oeL05V): ollng = (| Rt <)
and

0 1
@3)  Gy={oc Mgl = (g + [ gt GIPds)? < o}

The set U}, V¥ and G, are convex and closed in Ly([0,t]; U), Ly({0, #]; V)
and M, respectively. We put Yﬂf, p = Gp X V! for evader’s constraint sets
and define the reachable set R4(Y.} )} with respect to (i.e. w.r.t.) evader’s
controls by

(24)  Ru(Y:,)={z € H:x = aft;g,0,v)where(g, v) € ¥ }.

LEMMA 2.1. The set R;(Y,f,p) is closed and convex for any t > 0,7 >
0,02 0.
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Proof. Tt is clear that R(YZ ) is convex. We shall prove R(Y,) is closed.
Let x(t; gn, 0, vy,) strongly converge to some xg € H as n — oc for (gn,vn) €
Y. ,. Then we have to prove that zp = z(¢;g,0,v) for some (g,v) € Yl
Since Y , is bounded in the reflexive product space Ma x L2([0,t]; Y}, there
exists a subsequence (which we denote again by {{gn.vs)}} ) of {{gn,vn)}
weakly convergent to (g,v)(e.g. K.Yosida [7, pl41]). Furthermore, by
gl < timinkye lanllg; a0 ol < lminfacellonllpg (o
7, p120]) We see (g,v) € Y .

Let z* € H. Then by (1. 8)

0
(2(t; gn; 0,v), 2% = (W (H)g + /_h U,(s)gl(s)ds

t
+[ W (t — s)C(s)vn(s)ds,z")
0
= (g, gn), W ($)z", U ()" sz
t
+f {(un(8), C* (8 )W™(t — s)x™)yds.
0

Here it can be verified by the strong continuity of W(t) and C(t) and
the equation (1.7) that (W*(¢)z*, Ut {-)z*) € M5 and C*(t)W*(t — -)z* €
(L2([0,2); V)* = L2([0,t]; V*). Since {(gn,vn)} is weakly convergent to
(g,v) and z(t; gn,0,vy) is strongly convergent to xp, the above equality
implies, by letting n — oo, that

(@2 = (6,0, (W (@) U (e
: t
+ fo (v(s), C*(8)W™ (t — 8)z™)y ds

0 4
= (W(t)go+]:hUt(s)gl(s)ds+fO W(t — s)C(s)v(s)ds, z")

since z* € H is arbitrarily chosen zg = W(t)go+f3h Ui(s)g! (s)ds+f(f W{t—
$)C(s)v(s)ds, and hence zg € Ry(YZ, p)- This completes the proof of Lemma
2.1, O

LEMMA 2.2. {[6]) Let E and F be closed convex setgin X. Then E C F
if and only if

sup{z,z*) < sup{x,z*) for all 2* € H.
TEER el

DEFINITION 2.1. The system(s) is said to be max-min (4,7, p)-controll-

able on [0, ] with respect to B(z'; €) if each evader’s controls (g,v) € Y ,
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there exists a pursuer’s control u € U} such that z(t; g,u,v) € B(z%¢),
where B(2%¢) = {x € X; |z — 2% < e}(e > 0).
Here z° is assumed to be a described state (a target point), and B(z%; €)
is a target set with error e. Henceforth (-, -);y and {-, )y denote the duality
pairings between U and U* and, V and V*, and |- |y« and |- |v- denote the
norms in U* and V”, respectively.

Using Lemma 2.1 and Lemma 2.2, we obtain the following result.

THEOREM 2.1. The system(s) is max-min (4,, p)-controllable on [0, ]
with respect to B(z;€) if and only if

|2, 2™)| — elz*]
(25) < GBI~ )z|l2 04 — VICTOIWT(E — )2 |20
—pll(W*(#)2", U (-)2")l|ae; for each z* € H,

where

t 1
20) 1B W= Jolhgy = ([ 1B W (t-o)a'edo)t,
¢ 1
1) I OW =o' lagpa = ([ GO (¢~ 9o}t

0 1
(28) I(W*@®)z", Uz ()a*)llagy = (W ()=*}? +fh U (s)a"||2ds) 2
and
(2.9)
Ul (s) = AW*(t —s — h) +f a(@W*(t — s — 0)df a.e. s € [—h,0).
—h
By (2.5) it is evident that the max-min (8, v, p)-controllability of the sys-

tem(s) on [0,t] w.r.t. B(z0;¢) implies the max-min (8',~', p')-controllability
of(s) on [0,¢] w.r.t. B(z%¢) for any &' > 6,p' < p,¥ <y and € > e.

Proof. For each t > 0, we define two operators
B:: Ly([0,t};U) — H and 2, : M2 x L2([0,t]; V) — H by

(2.10) Byu = /(; W(t — s)B(s)u(s)ds

and

0 0
(2.11) 2Zi(g,v) = W(t)go+/hUt(s)gl(s)ds+[_h W(t—s)C(s)v(s)d.s,

respectively.
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It is verified as in the proof of Lemma 2.1 that B,(Uj) and Zy(Y} )
are closed convex in H. By definition, the system(s) is max-min (4,7, p)-
controllable on [0, ] with respect to B(z%¢) iff

(2.12) Z,(YE ) € —By(U}) + B(a%e).

By Lemma 2.1, the set Z;(YY ) is closed in H and the set —By(U}) +
B(z%¢€) = By(U})+B(z" €) is also closed. (In fact, it is obvious that B, (U}f)+
B(xz%¢) is convex. Since both B,(Ut) and B(z%€) are weakly closed and
bounded, these sets are weakly compact (cf, [2, p.425]). Then the sum
By(U}) + B(z%€) is weakly compact, and hence weakly closed. Therefore
by the well known theorem (cf, [2, p.442]), By(U%) + B(a®¢) is closed).
Since both Z(Y7 ) and —B;(U}) + B(z®; ) are convex, then we can apply
Lemma 2.2, to obtain that (2.12) is equivalent to

(2.13)  sup{{Z:(g,v),z*); (g,v) € Y3}
<sup{{Biu+y,z*)ucUbLyc B(:r:o;e)} for each z* € H.

By (2.11), we have
(214) Sllp{ (Zt (ga U)1 $*); (g: U) € Y;,p}

0
= sup{(W(t)q° +f_h Ui(s)g*(s)ds,z*); (4%, ¢*) € G,}

t
+sup{(/0 W(t — s)C(s)u(s)ds,z*);v € VI}
0
= psup{(¢", W*(t)z") + f_h@](SLUJ(S)ﬂf*)ds; 1g®, g" MIne, < 13

¢
+ysup{ | (o(5),C* W0 = s)a)vels oo < 1}
= pl(W*(0)z", U7 ()2" Wnmg +ANCT W™t — -)z7|l2, 0,9
On the other hand, by (2.10) the right side of (2.13) is calculated as follows;

(2.15) sup{(/o W (t — s)B(s)u(s)ds,z*);u € Uf}
+(z°,2") + sup{{y,z"); |y| < €}
= Sup{fﬂ {u(s), B*(s)W*(t — s)x*)uds; [lullz 0,9 < 6}

+(wo, 27) + esup{(z,27); |2| < 1}
= S|IB*()W*(t — 2"l j0.q + (0, &™) + ela”].
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Replacing z* by —z* in (2.15), we obtain condition (2.5). This completes
the proof. O

Next we consider the continuity of max-min controllability with respect
to positive times ¢, non-negative parameters 4,7, p, € and vectors 2V in H.

THEOREM 2.2. Assume that the system (s) is max-min (5, Yn, Pn)-con-
trollable on [0,t,] w.r.t. B(z2;¢) for each n > 1. If

(2.16) th = t>0, 80, =08 m—7 p—op, €n—ein RY
(2.17) 22 — 20 weakly in H as n — oo,

then the éystem (s) is max-min (6, 7, p)-controllable on [0,t] w.r.t. B (x9; €).
Note that we require a weak convergence 22 — 2% not a strong one.

Proof. Since the system(s) is max-min (8, ¥y, pn)-controllable on [0, ]
w.r.t. B(z2;¢,), then by Theorem 2.1,

(2.18) |{z},2")| — enlz”|
< 8n||B* (YW (tn — )& [2,0,60] — WIICTCIW (B — )27 |2, [0,2]
—pal|(W* (tn)z™, U, (Dllagg '

for each z* € H. Clearly by (2.17}, we have

(2.19) [{z3,2*)} — [(z°,2")| as n — 0.

Let us set

(2.20) Ry = |IB*OW* (- )z l204,
(2.21) Pty = [[CTOW*(E— )z 20,45
(2.22) Fa(t) = [[(W*(t—)2" U (")l

Let T = supp>;ta and I = [0,T]. Since W(t) = 0if ¢ <0, Fi(ts) can
be written as |[B*(-)W*(tn — )"||2,;. By reflexiveness of H, W*(t) is also
strongly continuous on Rt {cf, (3]}, so that by (2.16)

(2.23)  lim W*(t, — s)z” = lim W*(t —s)z" forall s€ [
I—00 n—00
provided that t — s # 0. Since
(2.29) |F1(ta) — Fi(t))
< (f B () (W (t — 8)z" — W*(t — s)z*)[.)?
I

< Gup BN [ Wt~ s)a" = W - )"y
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and supcy || B*(s)|| = sup,¢7 |1B(s)|| is bounded by the strong continuity of
B(-) and the uniform boundedness principle, thus by applying the Lebesgue
dominated convergence theorem, we have

(2.25) Fi(t,) — Fi(t) asn — co.

By similar calculations, we can verify

(2.26) Fy(tn) — Fa(t) as n — o0,
Lastly we shall show

(2.27) F3(t,) — Fs(t) as n — oo.

By the strong continuity of W*(t), we have

(2.28) [W*(tn)z" |2 — [W*(t)z*|? as n — oo.
From (2.9) it follows that

(220) UL ()" — Up(s)a®

= AW (t, —s—h)z" + /Sh ASa(EYW™ (£, — s+ E)x"dE

—ATW*(t — s — h}z* + fs 2a{E YW (t — s + &)z dE
a.e. s€[—h,0. '
We fix s such that the equality (2.29) holds. Then by (2.16} we have
(2.30) W' (tp,—s—h)—W*(t—s—h))—0in H,
provided that t — s — h #£ 0 ; and that
(2.31) (W (tn —s+ 6 —W*(t—s+&))z* - in H

provided that t — s + £ # 0 for each £ € [~h,s]. By (2.31), a(-) €
L%({—h,0]; R) and the Lebesgue dominated convergence theorem, we see
that ’

(2.32) |/ AEY W (b — 5 +6) — W*(t — 5 + &))" de]

Bl

< HAall( 04 a©PdE)* (2, KVt — 54 ) — Wo(t — 5+ )" )

— 0 as n — oco.
This implies, by (2.30) and (2.32), that for a.e. s € [—h,0]
(2.33) Ul z* — U{s)z* in H as n — oo.
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Hence from (2.33), we have

0 L 0 1
e ([ WP ([ ree Pt

0
< f (UF (s)a* — Uy (s))z*[2ds)} — 0 as n — o,
~h

by applying the Lebesgue dominated convergence theorem again. Therefore
we show (2.27). O

Now letting n ~+ oo in (2.18) we reach the desired inequality (2.5) by
(2.25)-(2.27). This proves, in view of Theorem 2.1, that the system(s) is
max-min (6, 7y, p)-controllable on [0,t] with respect to B(z%;¢).

3. Optimal value problems

In this section we study the existence of optimal solutions. Here, being
optimal means the minimality of time interval [0,¢] over which we can
control the system (Definition in section 2), the one of bound § of norms
of pursurer’s controls, the one of error ¢ for the target point zg or the
maximality of bounds v, g of norms of evader’s controls. Throughout this
section, it is assumed that the system (s) is max-min (4,y, p)-controllable
on [0,t] with respect to B(zC;¢) fot some &, p, 7, t,z° and e.

First we show the following theorem standing the existence of the mini-
mal time interval (0,t] on which max-min controllability is preserved.

THEOREM 3.1. Let
(31) = = {t/ € R* —{0}; the system (s) is max-min
(8,7, p) — controllable on [0,t'] w.r.t. B(sco;e)}.
Then inf mp = O or there exists a minimal time ty > 0 such that
(3.2) ty = min7y.

In particular, if inf 77 > 0, then the system (s) remains max-min (6,, p)-
controllable on [0,ts] w.r.t. B(z¢), where t; is given by (3.2).

Proof. Obviously, ty = infar exists. If ty > 0, let {t,} C 7p be a
sequence such that

(3.3) lim ¢, = infrp =t; > 0.

n—co

Then by (3.3) we can apply Theorem 2.2 to obtain the conclusion ¢ty € 7.
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1 ow we introduce the following subsets of H in order to characterize the
optimal values for various optimal value problems given below;

(3.4) Hp = {z" € Hi||B"OW"(t =)o o = 1}
(35) Ho = {" € B |C* (W (¢ - )2 llajo = 1)
(36) He = (" € Hi|(W" (0" U7 (" Mlag; = 1)

THEOREM 3.2. Let

(3.7 wp = {& € R*;the system (s) is max-min
(8',4,p) — controllable on [0,t'] w.r.t. B(z%e€)}.
Then there exists a minimal bound &y such that
(3.8) 8¢ = minwp.
In particular, the system (s) remains max-min {8;,~, p)-controllable on [0, t]
w.r.t. B(z% €). Further if Hp # ¢, then &5 is given by
(3.9) 8; = max{0, 4}
where
(3.10)6 = sup{|(@®, 2"} +/IC*(YW*(t - )z*||20
+o[{(W*(t)z*, Uf ()27)|lmy — ela”|; ™ € Hpl;

and if Hg = ¢, then &7 = 0.

Proof. By Theorem 2.2, we can readily see the existence of minrp.

Next we have to prove (3.9). To this end, setting 6} = max{0, 3}, we have
only to prove &; = §;. First we consider the case Hp # ¢. Then by the

definition (3.10) of 4, &% is finite. We shall show (3.9). Since d; € mp, the
following inequality holds for each z* € H :
(3.11) (2% a*)] — ela”|
< IB* W (E = )27, 0,9 — WCTCOOW(E ~ -)z*{|2.00,9
—pllW* (0)z*, U7 ()" Mingg.
Taking the supremum of {3.11) on the set Hp, we have §<6 7 by definition
of 4. Hence d% < &5. We will divide the proof into the two cases §)0 and
5 <0.
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First we assume & > 0. In order to show the equality 0% = &5, assume

contrary that 6}(61-, that is, 6 < d¢. Since &y = minwp, we have é¢mp
and hence by Theorem 2.1, there exists a nonzero vector x3 € H such that

(3.12) (@0, 23)] — elay
> 8||B* (YW (t — Yz§lla 0, — WC OW*(t - )25llz 0.
—pllW* )z, Us ()25 a5
This implies
(3.13) (2%, z%)| — el
+AHC* W (E — xgllz o + PV ()2, Up ()zg)|Img
> 8| B* (YW (t — Yzl og-
On the other hand, by substituting z* = ¥ in (3.11) we have
(3.14) (z°, 25| — €|zl
+AHCT YW (¢ — - )agll2 0.9 + pIW™ (E)a, UL ()2g)|ag
< &||B*(IW*(t — -)z5ll2, 0,4
By (3.13) and (3.14), it follows that §;||B*(-)W™* (¢ — -)x%ll2,;0,q > 0. Since
05 > 6 > 0, we have

(3.15) IB*()W*(t - )5l 0y > O
Let

(3.16) ys = z5/[|B* ()W {t - Jzsll2 0.4
then we see easily that y5 € Hp and

3.17) [z, y&) — elysl

+[C*(IW* (¢ = Jy5llzog + Il (W* E)ys, U Ousliag > 6.

The inequality (3.17) contradicts the definition (3.10) of 8. Thus, in the
case of 6 > 0, we see 6} = 5.

Second we assume & < (0. Then we can show for each x* €¢ H
(3.18) [z, 2*) —elz*| < —|C*(IW*(t — )" |20,
—pl|(W* ()", Ug (-)x*)||my -
When z* satisfies || B*(-)W*(t — -)z*|[3,;0,4 # 0, we set

v =a"/IIB" W (t - 95" o
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Then y* € Hp, so that by {3.10) we have

(3.19) 52 [y +AC OW*(t = Yy*llz 0.
+oll (W ()™, U (™)l vy — ely™],

and hence, by 8 <0, we get

(3.20) (2%, 2*)] - €]z*]

< =IO W =~ )z liz 0, — plI(W* (E)a™, U (-)™)| g5 -

Therefore (3.18) holds true in this case. Lastly, when z* satisfies

[|B*()W™(t — )z*|l2 09 = O,

we substitute this condition into (2.5) to obtain (3.18). This means that
the system (s) is (0,7, p)-controllable on [0,¢] w.r.t. B(z%¢). Thus 0 € 7p,
and this proves 5 = 0 since 5 = minmp. Thus, also in the case of §< 0,
we see 0 = §¢(=0).

Next we consider the case Hg = ¢¢. Then

|1B*(-)W™(t — -)x*{|2,50,q = O for each z* € H.
Therefore we have by (2.5)
(3.21) (2% 2*)| —elz*| < AC(OW™(t — 2|z, 0
—pll(W*()z*, Ug (-)7* M arg
for each x* € H. This shows é; = 0. Hence, the proof is completed. |

By analogous argument, we can verify the following theorem on the
existence of minimal target error e.

THEOREM 3.3. Let
(3.22) 7wz = {€ € R*;the system(s} is max-min
(6,7, p) — controllabe on [0,t] w.r.t. B(z%¢) }.
Then there exists a minimal value ¢ such that
(3.23) € =minng.

In particular, the system(s) remains max-min (8,~, p)-controllable on [0, ]
w.r.t. B(z%¢s). Further €y is given by

(3.24) e; = max{0, ¢}
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where

(3.25) é =sup{|(z°,z"}| + Y|C* (YW (t — )z*||2,10.4
~pl{(W*(t)z*, Uy ()" || m
=8| B*(YW*(t — -)z*|lg.0,q; |27} = 1}.

The next two theorems are related to the existence of maximal norm-
bounds for the evader’s controls.

THEOREM 3.4. Let

(3.26) wc = {7 € R™; the system(s) is max-min
(6,', p) — controllable on [0,t] with respect to B(z;¢)}.

If He # ¢ and m¢ is bounded, then there exists a maximal value vy sucl
that

(3.27) Y = Maxc.

In particular, the system(s) remains max-min (4, ¢, p)-controllable on [0, ]
with respect to B(«®; €). Further in this case the maximal value v is given
by
(3.28) vs = max{0, ¥},
where
(329) 4 = f{S|B"OW"(t — )z"llzfo,q + ela”|

— %, =) = pll(W*(t)z", Uy (-)2*)||mg; 2* € Hel

If Ho = ¢ or n¢ is unbounded, then n¢c = R*.

THEOREM 3.5. Let
(3.30) wr = {p € R, the system (s) is max-min
(8,7, o") — controllable on [0,t] w.r.t. B(z%¢) }.

If Hg # ¢ and g is bounded, then there exists a maximal value py such
that

(3.31) pf = MaX TR

In particular, the system (s) remains max-min (8,, py)-controllable on [0, ]
w.r.t B(z";€). Further in this case the maximal value p; is given by

(3.32) ps = max{0, 5},
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where
(333) 5 = BB OW(t— )2 llajoq + o)

—ACH YWt — )&z, 0, — [2° 252" € He}.
If Hg = ¢ or wp is unbounded, then mg = R*.

Proof of Theorem 8.4 and Theorem 3.5. We can prove these theorems
in a manner similar to Theorem 3.2. d
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