MAX-MIN CONTROLLABILITY OF DELAY-DIFFERENTIAL GAMES IN HILBERT SPACES

YONG HAN KANG, JIN MUN JEONG, AND JONG YEOUL PARK

ABSTRACT. We consider a linear differential game described by the delay-differential equation in a Hilbert space H:

$$\frac{d}{dt}x(t) = A_0x(t) + A_1x(t-h) + \int_{-h}^0 a(s)A_2x(t+s)ds$$

$$+ B(t)u(t) + C(t)v(t) \text{ a.e. } t > 0$$

$$x(0) = g^0, \ x(s) = g^1(s) \in [-h, 0),$$

where $g = (g^0, g^1) \in M_2 = H \times L_2([-h, 0); Y)$, $u \in L_2^{loc}(R^+; U)$, $v \in L_2^{loc}(R^+; V)$, U and V are Hilbert spaces, and B(t) and C(t) are families of bounded operators on U and V to H, respectively. A_0 generates an analytic semigroup $T(t) = e^{tA_0}$ in H.

The control variables g, u and v are supposed to be restricted in the norm bounded sets $\{g: ||g||_{M_2} \leq \rho\}$, $\{u: ||u||_{L_2([0,t];U)} \leq \delta\}$ and $\{v: ||v||_{L_2([0,t];V)} \leq \gamma\}$ $(\rho, \delta, \gamma \geq 0)$. For given $x^0 \in H$ and a given time t > 0, we study ϵ - approximate controllability to determine $x(\cdot)$ for a given g and $v(\cdot)$ such that the corresponding solution x(t) satisfies $||x(t) - x^0|| \leq \epsilon$ $(\epsilon > 0$:a given error).

0. Introduction

In the Euclidean space, various types of differential games of pursuit and evasion have been studied extensively (cf. Hájek[4]). Our main concern is to study max-min controllability problems in games theory, where we are concerned with selection of pursuer's controls from an admissible set against evader's controls. The max-min controllability has been investigated by Chan and Li[1] in the Euclidean space and in the Banach space, Park et al.[6] were studied in the case A_0 generates a C_0 -semigroup and $A_I(\cdot)$ instead of $a(s)A_2$ in (*) is in $L_1([-h,0];\mathcal{L}(X))$. But we deal with the case that A_0 generates an analytic semigroup, $a(\cdot) \in L^2([-h,0];R)$. and $A_2 \in \mathcal{L}(Y,Y^*)$. Recently, this system has been studied by many authors[3,5].

Received February 12, 2000.

2000 Mathematics Subject Classification: 49J25, 49J35, 49K25, 49N05.

Key words and phrases: max-min controllability, evader's control, minimal time.

Here controls are assumed to belong to some norm bounded constraint sets and in such constraint sets, we want to find these controls steering a given initial state to a desired state. In this paper, we study the existence of optimal solutions which are the minimum of control times and the minimum norm of controls for the delay-differential equation (*). We derive necessary and sufficient conditions for a max-min controllability problem in game theory.

1. Preliminaries

We give the description of a linear delay-differential game in a Hilbert space. Let C and R be the sets of complex and real numbers, respectively and let R^+ be the set of non-negative numbers. Let Ω be bounded smooth on R^n and $Y = H^1_0(\Omega)$, $H = L^2(\Omega)$. The norms of H, Y and the inner product of H are denoted by $|\cdot|, ||\cdot||$ and $\langle \cdot, \cdot \rangle$ respectively. By identifying the antidual of H with H we may consider $Y \hookrightarrow H \equiv H^* \hookrightarrow Y^*$. The norm of the dual space Y^* is denoted by $||\cdot||_*$.

We consider a linear game described by an abstract delay-differential system(s) on H;

(1.1)
$$\frac{dx(t)}{dt} = A_0 x(t) + A_1 x(t-h) + \int_{-h}^0 a(s) A_2 x(t+s) ds + B(t) u(t) + C(t) v(t), a.e. \ t > 0.$$

(1.2)
$$x(o) = g^0, \ x(s) = g^1(s) \ a.e. \ s \in [-h, 0).$$

where $g = (g^0, g^1) \in M_2 = H \times L_2([-h, 0]; Y), u \in L_2^{loc}(R^+; U), v \in L_2^{loc}(R^+; V), \{B(t) : t \geq 0\} \subset \mathcal{L}(U, H)$ is a strongly continuous family of bounded operators from U into H, $\{C(t); t \geq 0\} \subset \mathcal{L}(V, H)$ is also a strongly continuous family of bounded operators from V into H, A_0 generates an analytic semigroup $T(t) = e^{tA_0}$ both in H and Y^* and that $T(t): Y^* \to Y$ for each t > 0 and η is a stieltjes measure given by

(1.3)
$$\eta(s) = -\chi_{(-\infty,-h]}(s)A_1 - \int_s^0 a(\xi)d\xi A_2 : Y \to Y^*, s \in [-h,0],$$

where $\chi_{(-\infty,-h]}(\cdot)$ denotes the characteristic function of $(-\infty,-h]$.

The delayed terms in (1.1) are written simply by $\int_{-b}^{0} d\eta(s)x(t+s)$.

Let $a(x_1, x_2)$ be a bounded sesqulinear form defined in $Y \times Y$ satisfying Gårding's inequality

(1.4)
$$Re \ a(x,x) \ge c_0 ||x||^2 - c_1 |x|^2$$
,

where c_0 and c_1 are real constants. Let A_0 be the operator associated with the sesquilinear form

$$(1.5) \langle x_1, A_0 x_2 \rangle = -a(x_2, x_1), x_1, x_2 \in Y,$$

where $\langle \cdot, \cdot \rangle_{Y,Y^*}$ denotes also the duality pairing between Y and Y^* . The operator A_0 is bounded linear from Y into Y^* . The realization of A_0 in H, which is the restriction of A_0 to the domain $\mathcal{D}(A_0) = \{x \in Y : A_0x \in H\}$ is also denoted by A_0 .

Throughout this paper it is assumed that each $A_i (i = 1, 2)$ is bounded and linear from Y to Y^* (i.e. $A_i \in \mathcal{L}(Y, Y^*)$) such that A_i maps $\mathcal{D}(A_0)$ endowed with the graph norm of A_0 to H continuously. The real valued scalar function a(s) is assumed to be L^2 -integrable on [-h, 0], that is $a(\cdot) \in L^2([-h, 0]; R)$. Let W(t) be the fundamental solution of (s), which is a unique solution of the equation

(1.6)
$$W(t) = \begin{cases} T(t) + \int_0^t T(t-s) \int_{-h}^0 d\eta(\xi) W(\xi+s) ds, & t \ge 0, \\ 0, & t < 0 \end{cases}$$

i.e.

$$W(t) = \begin{cases} T(t) + \int_0^t (A_1 W(s-h) + \int_{-h}^0 a(\sigma) A_2 W(\sigma+s) d\sigma) ds, & t \ge 0 \\ 0, & t < 0. \end{cases}$$

Then $W(t) \in \mathcal{L}(H)$ for each $t \geq 0$ and W(t) is strongly continuous in $R^+ = [0, \infty)$ and AW(t) and $\frac{d}{dt}W(t)$ are strongly continuous except at $t = nh, n = 0, 1, 2, \ldots$ Therefore we may assume that

(1.8)
$$|W(t)| \le M, t \ge 0$$
, where M is a constant.

The solution of (1.1) is expressed by (1.9)

$$x(t,g,u,v) = \begin{cases} W(t)g^{0} + \int_{-h}^{0} U_{t}(s)g^{1}(s)ds + \int_{0}^{t} W(t-s)B(s)u(s)ds \\ + \int_{0}^{t} W(t-s)C(s)v(s)ds, t \ge 0 \\ g^{1}(t), a.e.t \in [-h,0), \end{cases}$$

where

(1.10)
$$U_t(s) = W(t-s-h)A_1 + \int_{-h}^{s} W(t-s+\sigma)a(\sigma)d\sigma$$

is well defined and is an element of $C(R^+; H)$.

The function x(t) = x(t, g, u, v) is a unique solution of the integrated form of (1.1), (1.2) by T(t). In this sense x(t) is called the mild solution of the system(s). In the system (s), u(t), v(t) and $(g^0, g^1(s))$ are called a pursuer's control, an evader's control on forcing term and an evader's control on initial data, respectively.

The state space $M_2 = H \times L_2([-h, 0]; Y)$ of the system (s) is the product reflexive space with the norm

$$(1.11) ||g||_{M_2} = (|g^0|^2 + \int_{-h}^0 ||g^1||^2 ds)^{\frac{1}{2}}, g = (g^0, g^1) \in M_2.$$

The dual space M_2^* of M_2 is identified with the product space $H \times L_2([-h, 0]; Y^*) \equiv H \times L_2([-h, 0]; Y)^*$ via the duality pairing

(1.12)
$$\langle g, f \rangle_{M_2} = \langle g^0, f^0 \rangle_H + \int_{-h}^0 \langle g^1(s), f^1(s) \rangle_{Y,Y^*} ds,$$

where $g = (g^0, g^1) \in M_2$, $f = (f^0, f^1) \in M_2^*$ and $\langle \cdot, \cdot \rangle_{Y,Y^*}$ denotes the duality pairing between Y and Y^* . Here we note that the pairing $\langle \cdot, \cdot \rangle_{Y,Y^*}$ is assumed to satisfy $\langle g^0, \alpha f^0 \rangle = \langle \bar{\alpha} g_0, f^0 \rangle$ for $\alpha \in \mathbf{C}, (g^0, f^0) \in H \times H, \bar{\alpha}$ being the conjugate of α . We denote the norm in Y^* by $||\cdot||_*$. For more detailed structural properties of the equations (1.1), (1.2) on the space M_2 , we refer to [3].

2. Max-Min controllability

In this section, we study a max-min controllability problem which is noncooperative in the sense that against one evader's controls, the other pursuer can select an appropriate control. For each $t>0, \rho\geq 0, \gamma\geq 0$, we define constraint sets

$$(2.1) U_{\delta}^{t} = \{ u \in L_{2}([0,t];U) : ||u||_{2,[0,t]} = (\int_{0}^{t} |u(s)|_{U}^{2} ds)^{\frac{1}{2}} \le \delta \},$$

$$(2.2) V_{\gamma}^{t} = \{ v \in L_{2}([0, t]; V) : ||v||_{2, [0, t]} = (\int_{0}^{t} |v(s)|_{V}^{2} ds)^{\frac{1}{2}} \le \gamma \}$$

and

$$(2.3) G_{\rho} = \{g \in M_2 : ||g||_{M_2} = (|g^0|^2 + \int_{-b}^0 ||g^1(s)||^2 ds)^{\frac{1}{2}} \le \rho\}.$$

The set $U_{\delta}^t, V_{\gamma}^t$ and G_{ρ} are convex and closed in $L_2([0,t];U), L_2([0,t];V)$ and M_2 , respectively. We put $Y_{\gamma,\rho}^t = G_{\rho} \times V_r^t$ for evader's constraint sets and define the reachable set $\mathcal{R}_t(Y_{\gamma,\rho}^t)$ with respect to (i.e. w.r.t.) evader's controls by

$$(2.4) \mathcal{R}_t(Y_{\gamma,\rho}^t) = \{x \in H : x = x(t;g,0,v) \text{ where } (g,v) \in Y_{\gamma,\rho}^t\}.$$

LEMMA 2.1. The set $\mathcal{R}_t(Y_{\gamma,\rho}^t)$ is closed and convex for any $t > 0, \gamma \ge 0$, $\rho \ge 0$.

Proof. It is clear that $\mathcal{R}(Y_{\gamma,\rho}^t)$ is convex. We shall prove $\mathcal{R}(Y_{\gamma,\rho}^t)$ is closed. Let $x(t;g_n,0,v_n)$ strongly converge to some $x_0 \in H$ as $n \to \infty$ for $(g_n,v_n) \in Y_{\gamma,\rho}^t$. Then we have to prove that $x_0 = x(t;g,0,v)$ for some $(g,v) \in Y_{\gamma,\rho}^t$. Since $Y_{\gamma,\rho}^t$ is bounded in the reflexive product space $M_2 \times L_2([0,t];Y)$, there exists a subsequence (which we denote again by $\{(g_n,v_n)\}$) of $\{(g_n,v_n)\}$ weakly convergent to (g,v)(e.g. K.Yosida [7, p141]). Furthermore, by $||g||_{M_2} \leq \liminf_{n \to \infty} ||g_n||_{M_2}$ and $||v||_{2,[0,t]} \leq \liminf_{n \to \infty} ||v_n||_{2,[0,t]}$ (e.g. [7, p120]). We see $(g,v) \in Y_{\gamma,\rho}^t$.

Let $x^* \in H$. Then by (1.8),

$$\langle x(t; g_n, 0, v_n), x^* \rangle = \langle W(t)g_n^0 + \int_{-h}^0 U_t(s)g_n^1(s)ds$$

$$+ \int_0^t W(t-s)C(s)v_n(s)ds, x^* \rangle$$

$$= \langle (g_n^0, g_n^1), (W(t)x^*, U_t^*(\cdot)x^*) \rangle_{M_2}$$

$$+ \int_0^t \langle v_n(s), C^*(s)W^*(t-s)x^* \rangle_V ds.$$

Here it can be verified by the strong continuity of W(t) and C(t) and the equation (1.7) that $(W^*(t)x^*, U_t^*(\cdot)x^*) \in M_2^*$ and $C^*(t)W^*(t-\cdot)x^* \in (L_2([0,t];V))^* = L_2([0,t];V^*)$. Since $\{(g_n, v_n)\}$ is weakly convergent to (g,v) and $x(t;g_n,0,v_n)$ is strongly convergent to x_0 , the above equality implies, by letting $n \to \infty$, that

$$\langle x_0, x^* \rangle = \langle (g^0, g^1), (W^*(t)x^*, U_t^*(\cdot)x^*) \rangle_{M_2}$$

$$+ \int_0^t \langle v(s), C^*(s)W^*(t-s)x^* \rangle_V ds$$

$$= \langle W(t)g^0 + \int_{-h}^0 U_t(s)g^1(s)ds + \int_0^t W(t-s)C(s)v(s)ds, x^* \rangle$$

since $x^* \in H$ is arbitrarily chosen $x_0 = W(t)g^0 + \int_{-h}^0 U_t(s)g^1(s)ds + \int_0^t W(t-s)C(s)v(s)ds$, and hence $x_0 \in \mathcal{R}_t(Y_{\gamma,\rho}^t)$. This completes the proof of Lemma 2.1.

LEMMA 2.2. ([6]) Let E and F be closed convex sets in X. Then $E \subset F$ if and only if

$$\sup_{x \in E} \langle x, x^* \rangle \le \sup_{x \in F} \langle x, x^* \rangle \text{ for all } x^* \in H.$$

DEFINITION 2.1. The system(s) is said to be max-min (δ, γ, ρ) -controllable on [0, t] with respect to $B(x^0; \epsilon)$ if each evader's controls $(g, v) \in Y^t_{\gamma, \rho}$,

there exists a pursuer's control $u \in U^t_\delta$ such that $x(t;g,u,v) \in B(x^0;\epsilon)$, where $B(x^0;\epsilon) = \{x \in X; |x-x^0| \le \epsilon\} (\epsilon \ge 0)$.

Here x^0 is assumed to be a described state (a target point), and $B(x^0; \epsilon)$ is a target set with error ϵ . Henceforth $\langle \cdot, \cdot \rangle_U$ and $\langle \cdot, \cdot \rangle_V$ denote the duality pairings between U and U^* and, V and V^* , and $|\cdot|_{U^*}$ and $|\cdot|_{V^*}$ denote the norms in U^* and V^* , respectively.

Using Lemma 2.1 and Lemma 2.2, we obtain the following result.

THEOREM 2.1. The system(s) is max-min (δ, γ, ρ) -controllable on [0, t] with respect to $B(x^0; \epsilon)$ if and only if

where

$$(2.6) \quad ||B^*(\cdot)W^*(t-\cdot)x^*||_{2,[0,t]} \quad = \left(\int_0^t |B^*(s)W^*(t-s)x^*|_{U^*}^2 ds\right)^{\frac{1}{2}},$$

$$(2.7) \quad ||C^*(\cdot)W^*(t-\cdot)x^*||_{2,[0,t]} \quad = \left(\int_0^t |C^*(s)W^*(t-s)x^*|_{V^*}^2 ds\right)^{\frac{1}{2}},$$

$$(2.8) \quad ||(W^*(t)x^*, U_t^*(\cdot)x^*)||_{M_2^*} \quad = (|W^*(t)x^*|^2 + \int_{-h}^0 ||U_t^*(s)x^*||_*^2 ds)^{\frac{1}{2}}$$

and

(2.9) $U_t^*(s) = A_1^* W^*(t - s - h) + \int_{-s}^{s} a(\theta) W^*(t - s - \theta) d\theta \text{ a.e. } s \in [-h, 0).$

By (2.5) it is evident that the max-min (δ, γ, ρ) -controllability of the system(s) on [0,t] w.r.t. $B(x^0;\epsilon)$ implies the max-min $(\delta', \gamma', \rho')$ -controllability of(s) on [0,t] w.r.t. $B(x^0;\epsilon')$ for any $\delta' \geq \delta, \rho' \leq \rho, \gamma' \leq \gamma$ and $\epsilon' \geq \epsilon$.

Proof. For each t > 0, we define two operators

$$\mathcal{B}_t: L_2([0,t];U) \to H \text{ and } \mathcal{Z}_t: M_2 \times L_2([0,t];V) \to H \text{ by}$$

(2.10)
$$\mathcal{B}_t u = \int_0^t W(t-s)B(s)u(s)ds$$

and

(2.11)
$$Z_t(g,v) = W(t)g^0 + \int_{-h}^0 U_t(s)g^1(s)ds + \int_{-h}^0 W(t-s)C(s)v(s)ds,$$

respectively.

It is verified as in the proof of Lemma 2.1 that $\mathcal{B}_t(U_{\delta}^t)$ and $\mathcal{Z}_t(Y_{\gamma,\rho}^t)$ are closed convex in H. By definition, the system(s) is max-min (δ, γ, ρ) -controllable on [0, t] with respect to $B(x^0; \epsilon)$ iff

(2.12)
$$\mathcal{Z}_t(Y_{\gamma,\rho}^t) \subset -\mathcal{B}_t(U_{\delta}^t) + B(x^0;\epsilon).$$

By Lemma 2.1, the set $\mathcal{Z}_t(Y_{\gamma,\rho}^t)$ is closed in H and the set $-\mathcal{B}_t(U_\delta^t) + B(x^0;\epsilon) = \mathcal{B}_t(U_\delta^t) + B(x^0;\epsilon)$ is also closed.(In fact, it is obvious that $\mathcal{B}_t(U_\delta^t) + B(x^0;\epsilon)$ is convex. Since both $\mathcal{B}_t(U_\delta^t)$ and $B(x^0;\epsilon)$ are weakly closed and bounded, these sets are weakly compact (cf. [2, p.425]). Then the sum $\mathcal{B}_t(U_\delta^t) + B(x^0;\epsilon)$ is weakly compact, and hence weakly closed. Therefore by the well known theorem (cf. [2, p.442]), $\mathcal{B}_t(U_\delta^t) + B(x^0;\epsilon)$ is closed). Since both $\mathcal{Z}_t(Y_{\gamma,\rho}^t)$ and $-\mathcal{B}_t(U_\delta^t) + B(x^0;\epsilon)$ are convex, then we can apply Lemma 2.2, to obtain that (2.12) is equivalent to

(2.13)
$$\sup\{\langle \mathcal{Z}_t(g,v), x^* \rangle; (g,v) \in Y_{\gamma,\rho}^t\}$$

$$\leq \sup\{\langle \mathcal{B}_t u + y, x^* \rangle; u \in U_{\delta}^t, y \in B(x^0; \epsilon)\} \text{ for each } x^* \in H.$$

By (2.11), we have

$$(2.14) \quad \sup\{\langle \mathcal{Z}_{t}(g,v), x^{*}\rangle; (g,v) \in Y_{\gamma,\rho}^{t}\}$$

$$= \sup\{\langle W(t)g^{0} + \int_{-h}^{0} U_{t}(s)g^{1}(s)ds, x^{*}\rangle; (g^{0}, g^{1}) \in G_{\rho}\}$$

$$+ \sup\{\langle \int_{0}^{t} W(t-s)C(s)v(s)ds, x^{*}\rangle; v \in V_{\gamma}^{t}\}$$

$$= \rho \sup\{\langle g^{0}, W^{*}(t)x^{*}\rangle + \int_{-h}^{0} \langle g^{1}(s), U_{t}^{*}(s)x^{*}\rangle ds; ||(g^{0}, g^{1})||_{M_{2}} \leq 1\}$$

$$+ \gamma \sup\{\int_{0}^{t} \langle v(s), C^{*}(s)W^{*}(t-s)x^{*}\rangle_{V} ds; ||v||_{2,[0,t]} \leq 1\}$$

$$= \rho ||(W^{*}(t)x^{*}, U_{t}^{*}(\cdot)x^{*})||_{M_{2}^{s}} + \gamma ||C^{*}(\cdot)W^{*}(t-\cdot)x^{*}||_{2,[0,t]}.$$

On the other hand, by (2.10) the right side of (2.13) is calculated as follows;

(2.15)
$$\sup\{\langle \int_{0}^{t} W(t-s)B(s)u(s)ds, x^{*}\rangle; u \in U_{\delta}^{t}\}$$

$$+\langle x^{0}, x^{*}\rangle + \sup\{\langle y, x^{*}\rangle; |y| \leq \epsilon\}$$

$$= \sup\{\int_{0}^{t} \langle u(s), B^{*}(s)W^{*}(t-s)x^{*}\rangle_{U}ds; ||u||_{2,[0,t]} \leq \delta\}$$

$$+\langle x_{0}, x^{*}\rangle + \epsilon \sup\{\langle z, x^{*}\rangle; |z| \leq 1\}$$

$$= \delta||B^{*}(\cdot)W^{*}(t-\cdot)x^{*}||_{2,[0,t]} + \langle x_{0}, x^{*}\rangle + \epsilon|x^{*}|.$$

Replacing x^* by $-x^*$ in (2.15), we obtain condition (2.5). This completes the proof.

Next we consider the continuity of max-min controllability with respect to positive times t, non-negative parameters $\delta, \gamma, \rho, \epsilon$ and vectors x^0 in H.

THEOREM 2.2. Assume that the system (s) is max-min $(\delta_n, \gamma_n, \rho_n)$ -controllable on $[0, t_n]$ w.r.t. $B(x_n^0; \epsilon)$ for each $n \ge 1$. If

$$(2.16) t_n \to t > 0, \ \delta_n \to \delta, \ \gamma_n \to \gamma, \ \rho \to \rho, \ \epsilon_n \to \epsilon \text{ in } R^+$$

(2.17)
$$x_n^0 \to x^0$$
 weakly in H as $n \to \infty$,

then the system (s) is max-min (δ, γ, ρ) -controllable on [0, t] w.r.t. $B(x^0; \epsilon)$. Note that we require a weak convergence $x_n^0 \to x^0$ not a strong one.

Proof. Since the system(s) is max-min $(\delta_n, \gamma_n, \rho_n)$ -controllable on $[0, t_n]$ w.r.t. $B(x_n^0; \epsilon_n)$, then by Theorem 2.1,

$$(2.18) \quad |\langle x_{n}^{0}, x^{*} \rangle| - \epsilon_{n} |x^{*}|$$

$$\leq \delta_{n} ||B^{*}(\cdot)W^{*}(t_{n} - \cdot)x^{*}||_{2,[0,t_{n}]} - \gamma_{n} ||C^{*}(\cdot)W^{*}(t_{n} - \cdot)x^{*}||_{2,[0,t_{n}]}$$

$$-\rho_{n} ||(W^{*}(t_{n})x^{*}, U_{t_{n}}^{*}(\cdot))||_{M_{2}^{*}}$$

for each $x^* \in H$. Clearly by (2.17), we have

(2.19)
$$|\langle x_n^0, x^* \rangle| \to |\langle x^0, x^* \rangle| \text{ as } n \to \infty.$$

Let us set

$$(2.20) F_1(t) = ||B^*(\cdot)W^*(t-\cdot)x^*||_{2,[0,t]},$$

$$(2.21) F_2(t) = ||C^*(\cdot)W^*(t-\cdot)x^*||_{2,[0,t]},$$

$$(2.22) F_3(t) = ||(W^*(t-\cdot)x^*, U_t^*(\cdot)x^*)||_{M_2^*}.$$

Let $T = \sup_{n \geq 1} t_n$ and I = [0, T]. Since W(t) = 0 if t < 0, $F_1(t_n)$ can be written as $||B^*(\cdot)W^*(t_n - \cdot)x^*||_{2,I}$. By reflexiveness of H, $W^*(t)$ is also strongly continuous on R^+ (cf. [3]), so that by (2.16)

(2.23)
$$\lim_{n \to \infty} W^*(t_n - s)x^* = \lim_{n \to \infty} W^*(t - s)x^* \text{ for all } s \in I$$

provided that $t - s \neq 0$. Since

$$|F_{1}(t_{n}) - F_{1}(t)|$$

$$\leq \left(\int_{I} |B^{*}(s)(W^{*}(t_{n} - s)x^{*} - W^{*}(t - s)x^{*})|_{U^{*}}^{2}\right)^{\frac{1}{2}}$$

$$\leq \left(\sup_{s \in I} ||B^{*}(s)||\right) \left(\int_{I} |W^{*}(t_{n} - s)x^{*} - W^{*}(t - s)x^{*}|_{U^{*}}^{2} ds\right)^{\frac{1}{2}}$$

and $\sup_{s\in I} ||B^*(s)|| = \sup_{s\in I} ||B(s)||$ is bounded by the strong continuity of $B(\cdot)$ and the uniform boundedness principle, thus by applying the Lebesgue dominated convergence theorem, we have

$$(2.25) F_1(t_n) \to F_1(t) as n \to \infty.$$

By similar calculations, we can verify

$$(2.26) F_2(t_n) \to F_2(t) \text{ as } n \to \infty.$$

Lastly we shall show

$$(2.27) F_3(t_n) \to F_3(t) \text{ as } n \to \infty.$$

By the strong continuity of $W^*(t)$, we have

$$(2.28) |W^*(t_n)x^*|^2 \to |W^*(t)x^*|^2 \text{ as } n \to \infty.$$

From (2.9) it follows that

$$(2.29) U_{t_n}^*(s)x^* - U_t^*(s)x^*$$

$$= A_1^*W^*(t_n - s - h)x^* + \int_{-h}^s A_2^*a(\xi)W^*(t_n - s + \xi)x^*d\xi$$

$$-A_1^*W^*(t - s - h)x^* + \int_{-h}^s A_2^*a(\xi)W^*(t - s + \xi)x^*d\xi$$
a.e. $s \in [-h, 0]$.

We fix s such that the equality (2.29) holds. Then by (2.16) we have

$$(2.30) A_1^*(W^*(t_n - s - h) - W^*(t - s - h)) \to 0 \text{ in } H,$$

provided that $t - s - h \neq 0$; and that

$$(2.31) (W^*(t_n - s + \xi) - W^*(t - s + \xi))x^* \to \text{in } H$$

provided that $t-s+\xi\neq 0$ for each $\xi\in [-h,s]$. By (2.31), $a(\cdot)\in L^2([-h,0];R)$ and the Lebesgue dominated convergence theorem, we see that

$$(2.32) \qquad \left| \int_{-h}^{s} A_{2}^{*} a(\xi) (W^{*}(t_{n} - s + \xi) - W^{*}(t - s + \xi)) x^{*} d\xi \right|$$

$$\leq ||A_{2}|| \left(\int_{-h}^{0} |a(\xi)|^{2} d\xi \right)^{\frac{1}{2}} \left(\int_{-h}^{s} |(W^{*}(t_{n} - s + \xi) - W^{*}(t - s + \xi)) x^{*}|^{2} d\xi \right)^{\frac{1}{2}}$$

$$\to 0 \text{ as } n \to \infty.$$

This implies, by (2.30) and (2.32), that for a.e. $s \in [-h, 0]$

$$(2.33) U_{t_n}^* x^* \to U_t^*(s) x^* \text{ in } H \text{ as } n \to \infty.$$

Hence from (2.33), we have

$$|(\int_{-h}^{0} |U_{t_{n}}^{*}(s)x^{*}|^{2}ds)^{\frac{1}{2}} - (\int_{-h}^{0} |U_{t}^{*}(s)x^{*}|^{2}ds)^{\frac{1}{2}}|$$

$$\leq (\int_{-h}^{0} |(U_{t_{n}}^{*}(s)x^{*} - U_{t}^{*}(s))x^{*}|^{2}ds)^{\frac{1}{2}} \to 0 \text{ as } n \to \infty,$$

by applying the Lebesgue dominated convergence theorem again. Therefore we show (2.27).

Now letting $n \to \infty$ in (2.18) we reach the desired inequality (2.5) by (2.25)-(2.27). This proves, in view of Theorem 2.1, that the system(s) is max-min (δ, γ, ρ) -controllable on [0, t] with respect to $B(x^0; \epsilon)$.

3. Optimal value problems

In this section we study the existence of optimal solutions. Here, being optimal means the minimality of time interval [0,t] over which we can control the system (Definition in section 2), the one of bound δ of norms of pursurer's controls, the one of error ϵ for the target point x_0 or the maximality of bounds γ, ρ of norms of evader's controls. Throughout this section, it is assumed that the system (s) is max-min (δ, γ, ρ) -controllable on [0,t] with respect to $B(x^0;\epsilon)$ for some $\delta, \rho, \gamma, t, x^0$ and ϵ .

First we show the following theorem standing the existence of the minimal time interval $[0, t_f]$ on which max-min controllability is preserved.

THEOREM 3.1. Let

(3.1)
$$\pi_T = \{t' \in R^+ - \{0\}; \text{ the system (s) is max-min } (\delta, \gamma, \rho) - \text{controllable on } [0, t'] \text{ w.r.t. } B(x^0; \epsilon)\}.$$

Then $\inf \pi_T = 0$ or there exists a minimal time $t_f > 0$ such that

$$(3.2) t_f = \min \pi_T.$$

In particular, if inf $\pi_T > 0$, then the system (s) remains max-min (δ, γ, ρ) -controllable on $[0, t_f]$ w.r.t. $B(x^0; \epsilon)$, where t_f is given by (3.2).

Proof. Obviously, $t_f = \inf \pi_T$ exists. If $t_f > 0$, let $\{t_n\} \subset \pi_T$ be a sequence such that

(3.3)
$$\lim_{n \to \infty} t_n = \inf \pi_T = t_f > 0.$$

Then by (3.3) we can apply Theorem 2.2 to obtain the conclusion $t_f \in \pi_T$.

I by we introduce the following subsets of H in order to characterize the optimal values for various optimal value problems given below;

(3.4)
$$H_B = \{x^* \in H; ||B^*(\cdot)W^*(t - \cdot)x^*||_{2,[0,t]} = 1\}$$

(3.5)
$$H_C = \{x^* \in H; ||C^*(\cdot)W^*(t - \cdot)x^*||_{2,[0,t]} = 1\}$$

(3.6)
$$H_G = \{x^* \in H; ||(W^*(t)x^*, U_t^*(\cdot)x^*)||_{M_2^*} = 1\}.$$

THEOREM 3.2. Let

(3.7)
$$\pi_D = \{\delta' \in R^+; \text{ the system (s) is max-min } (\delta', \gamma, \rho) - \text{ controllable on } [0, t'] \text{ w.r.t. } B(x^0; \epsilon) \}.$$

Then there exists a minimal bound δ_f such that

$$\delta_f = \min \pi_D.$$

In particular, the system (s) remains max-min (δ_f, γ, ρ) -controllable on [0, t] w.r.t. $B(x^0; \epsilon)$. Further if $H_B \neq \phi$, then δ_f is given by

$$\delta_f = \max\{0, \hat{\delta}\}\$$

where

$$(3.10) \,\hat{\delta} = \sup\{|\langle x^0, x^* \rangle| + \gamma || C^*(\cdot) W^*(t - \cdot) x^* ||_{2, [0, t]} + \rho || (W^*(t) x^*, U_t^*(\cdot) x^*) ||_{M_x^*} - \epsilon |x^*|; x^* \in H_B\};$$

and if $H_B = \phi$, then $\delta_f = 0$.

Proof. By Theorem 2.2, we can readily see the existence of $\min \pi_D$. Next we have to prove (3.9). To this end, setting $\delta_f' = \max\{0, \hat{\delta}\}$, we have only to prove $\delta_f' = \delta_f$. First we consider the case $H_B \neq \phi$. Then by the definition (3.10) of $\hat{\delta}, \delta_f'$ is finite. We shall show (3.9). Since $\delta_f \in \pi_D$, the following inequality holds for each $x^* \in H$:

$$\begin{aligned} |\langle x^{0}, x^{*} \rangle| - \epsilon |x^{*}| \\ &\leq \delta_{f} ||B^{*}(\cdot)W^{*}(t - \cdot)x^{*}||_{2,[0,t]} - \gamma ||C^{*}(\cdot)W^{*}(t - \cdot)x^{*}||_{2,[0,t]} \\ &- \rho ||(W^{*}(t)x^{*}, U_{t}^{*}(\cdot)x^{*})||_{M_{2}^{*}}. \end{aligned}$$

Taking the supremum of (3.11) on the set H_B , we have $\hat{\delta} \leq \delta_f$ by definition of $\hat{\delta}$. Hence $\delta'_f \leq \delta_f$. We will divide the proof into the two cases $\delta > 0$ and $\hat{\delta} \leq 0$.

First we assume $\hat{\delta} > 0$. In order to show the equality $\delta'_f = \delta_f$, assume contrary that $\delta'_f \langle \delta_f$, that is, $\hat{\delta} \leq \delta_f$. Since $\delta_f = \min \pi_D$, we have $\hat{\delta} \notin \pi_D$ and hence by Theorem 2.1, there exists a nonzero vector $x_S^* \in H$ such that

$$|\langle x^{0}, x_{S}^{*} \rangle| - \epsilon |x_{S}^{*}|$$

$$> \hat{\delta} ||B^{*}(\cdot)W^{*}(t - \cdot)x_{S}^{*}||_{2,[0,t]} - \gamma ||C^{*}(\cdot)W^{*}(t - \cdot)x_{S}^{*}||_{2,[0,t]}$$

$$-\rho ||(W^{*}(t)x_{S}^{*}, U_{t}^{*}(\cdot)x_{S}^{*})||_{M_{s}^{*}}.$$

This implies

(3.13)
$$|\langle x^{0}, x_{S}^{*} \rangle| - \epsilon |x_{S}^{*}|$$

$$+ \gamma ||C^{*}(\cdot)W^{*}(t - \cdot)x_{S}^{*}||_{2,[0,t]} + \rho ||(W^{*}(t)x_{S}^{*}, U_{t}^{*}(\cdot)x_{S}^{*})||_{M_{2}^{*}}$$

$$> \hat{\delta}||B^{*}(\cdot)W^{*}(t - \cdot)x_{S}^{*})||_{2,[0,t]}.$$

On the other hand, by substituting $x^* = x_S^*$ in (3.11) we have

(3.14)
$$|\langle x^{0}, x_{S}^{*} \rangle| - \epsilon |x_{S}^{*}|$$

$$+ \gamma ||C^{*}(\cdot)W^{*}(t - \cdot)x_{S}^{*}||_{2,[0,t]} + \rho ||(W^{*}(t)x_{S}^{*}, U_{t}^{*}(\cdot)x_{S}^{*})||_{M_{2}^{*}}$$

$$\leq \delta_{f} ||B^{*}(\cdot)W^{*}(t - \cdot)x_{S}^{*}||_{2,[0,t]}.$$

By (3.13) and (3.14), it follows that $\delta_f ||B^*(\cdot)W^*(t-\cdot)x_S^*||_{2,[0,t]} > 0$. Since $\delta_f > \hat{\delta} > 0$, we have

$$(3.15) ||B^*(\cdot)W^*(t-\cdot)x_S^*||_{2,[0,t]} > 0.$$

Let

$$(3.16) y_S^* = x_S^*/||B^*(\cdot)W^*(t-\cdot)x_S^*||_{2,[0,t]},$$

then we see easily that $y_S^* \in H_B$ and

(3.17)
$$|\langle x^0, y_S^* \rangle - \epsilon |y_S^*|$$

$$+ \gamma ||C^*(\cdot)W^*(t - \cdot)y_S^*||_{2,[0,t]} + \rho ||(W^*(t)y_S^*, U_t^*(\cdot)y_S^*)||_{M_2^*} > \hat{\delta}.$$

The inequality (3.17) contradicts the definition (3.10) of $\hat{\delta}$. Thus, in the case of $\hat{\delta} > 0$, we see $\delta'_f = \delta_f$.

Second we assume $\hat{\delta} \leq 0$. Then we can show for each $x^* \in H$

$$(3.18) |\langle x^0, x^* \rangle| - \epsilon |x^*| \le -\gamma ||C^*(\cdot)W^*(t - \cdot)x^*||_{2,[0,t]} -\rho ||(W^*(t)x^*, U_t^*(\cdot)x^*)||_{M_2^*}.$$

When x^* satisfies $||B^*(\cdot)W^*(t-\cdot)x^*||_{2,[0,t]}\neq 0$, we set

$$y^* = x^*/||B^*(\cdot)W^*(t-\cdot)x^*||_{2,[0,t]}.$$

Then $y^* \in H_B$, so that by (3.10) we have

(3.19)
$$\hat{\delta} \geq |\langle x^0, y^* \rangle| + \gamma ||C^*(\cdot)W^*(t - \cdot)y^*||_{2,[0,t]} + \rho ||(W^*(t)y^*, U_t^*(\cdot)y^*)||_{M_2^*} - \epsilon |y^*|,$$

and hence, by $\hat{\delta} \leq 0$, we get

$$\begin{aligned} |\langle x^{0}, x^{*} \rangle| - \epsilon |x^{*}| \\ &\cdot \leq -\gamma ||C^{*}(\cdot)W^{*}(t - \cdot)x^{*}||_{2,[0,t]} - \rho ||(W^{*}(t)x^{*}, U_{t}^{*}(\cdot)x^{*})||_{M_{2}^{*}}. \end{aligned}$$

Therefore (3.18) holds true in this case. Lastly, when x^* satisfies

$$||B^*(\cdot)W^*(t-\cdot)x^*||_{2,[0,t]} = 0,$$

we substitute this condition into (2.5) to obtain (3.18). This means that the system (s) is $(0, \gamma, \rho)$ -controllable on [0, t] w.r.t. $B(x^0; \epsilon)$. Thus $0 \in \pi_D$, and this proves $\delta_f = 0$ since $\delta_f = \min \pi_D$. Thus, also in the case of $\hat{\delta} \leq 0$, we see $\delta'_f = \delta_f (= 0)$.

Next we consider the case $H_B = \phi$. Then

$$||B^*(\cdot)W^*(t-\cdot)x^*||_{2,[0,t]}=0$$
 for each $x^*\in H$.

Therefore we have by (2.5)

(3.21)
$$|\langle x^0, x^* \rangle| - \epsilon |x^*| \le \gamma ||C^*(\cdot)W^*(t - \cdot)x^*||_{2,[0,t]} \\ -\rho ||(W^*(t)x^*, U_t^*(\cdot)x^*)||_{M_2^*}$$

for each $x^* \in H$. This shows $\delta_f = 0$. Hence, the proof is completed. \square

By analogous argument, we can verify the following theorem on the existence of minimal target error ϵ .

THEOREM 3.3. Let

(3.22)
$$\pi_E = \{ \epsilon' \in R^+; \text{the system}(s) \text{ is max-min} \\ (\delta, \gamma, \rho) - \text{controllabe on } [0, t] \text{ w.r.t. } B(x^0; \epsilon') \}.$$

Then there exists a minimal value ϵ_f such that

$$(3.23) \epsilon_f = \min \pi_E.$$

In particular, the system(s) remains max-min (δ, γ, ρ) -controllable on [0, t] w.r.t. $B(x^0; \epsilon_f)$. Further ϵ_f is given by

$$\epsilon_f = \max\{0, \hat{\epsilon}\}$$

190

where

(3.25)
$$\hat{\epsilon} = \sup\{|\langle x^0, x^* \rangle| + \gamma || C^*(\cdot) W^*(t - \cdot) x^* ||_{2, [0, t]} \\ -\rho || (W^*(t) x^*, U_t^*(\cdot) x^* ||_{M_2^*} \\ -\delta || B^*(\cdot) W^*(t - \cdot) x^* ||_{2, [0, t]}; |x^*| = 1\}.$$

The next two theorems are related to the existence of maximal normbounds for the evader's controls.

THEOREM 3.4. Let

(3.26)
$$\pi_C = \{ \gamma' \in R^+; \text{the system}(s) \text{ is max-min } (\delta, \gamma', \rho) - \text{controllable on } [0, t] \text{ with respect to } B(x^0; \epsilon) \}.$$

If $H_C \neq \phi$ and π_C is bounded, then there exists a maximal value γ_f such that

$$(3.27) \gamma_f = \max \pi_C.$$

In particular, the system(s) remains max-min (δ, γ_f, ρ) -controllable on [0, t] with respect to $B(x^0; \epsilon)$. Further in this case the maximal value γ_f is given by

$$(3.28) \gamma_f = \max\{0, \hat{\gamma}\},$$

where

$$(3.29) \quad \hat{\gamma} = \inf\{\delta | |B^*(\dot{)}W^*(t-\cdot)x^*||_{2,[0,t]} + \epsilon |x^*| - |\langle x^0, x^* \rangle| - \rho | |(W^*(t)x^*, U_t^*(\cdot)x^*)||_{M_2^*}; x^* \in H_C\}.$$

If $H_C = \phi$ or π_C is unbounded, then $\pi_C = R^+$.

THEOREM 3.5. Let

(3.30)
$$\pi_R = \{ \rho' \in R^+; \text{ the system (s) is max-min } (\delta, \gamma, \rho') - \text{controllable on } [0, t] \text{ w.r.t. } B(x^0; \epsilon) \}.$$

If $H_G \neq \phi$ and π_R is bounded, then there exists a maximal value ρ_f such that

$$(3.31) \rho_f = \max \pi_R.$$

In particular, the system (s) remains max-min (δ, γ, ρ_f) -controllable on [0, t] w.r.t $B(x^0; \epsilon)$. Further in this case the maximal value ρ_f is given by

where

$$(3.33) \quad \hat{\rho} = \inf\{\delta ||B^*(\cdot)W^*(t-\cdot)x^*||_{2,[0,t]} + |x^*| -\gamma ||C^*(\cdot)W^*(t-\cdot)x^*||_{2,[0,t]} - |\langle x^0, x^* \rangle|; x^* \in H_G\}.$$

If $H_G = \phi$ or π_R is unbounded, then $\pi_R = R^+$.

Proof of Theorem 3.4 and Theorem 3.5. We can prove these theorems in a manner similar to Theorem 3.2.

References

- [1] W. L. Chan and C. W. Li, Max-Min controllability in Pursuit Games with Norm-Bounded controls, Journal of Optimization theory and Applications 37 (1982), no. 1.
- [2] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1966.
- [3] J. M. Jeong, S. I. Nakagir, and H. Tanabe, Structural operator and semigroups associated with functional differentional equations in Hilbert spaces, Osak. J. Math. 30 (1993).
- [4] O. Hájek, Pursuit Games, Academic Press, New York, 1975.
- [5] J. Y. Park, J. M. Jeong, and Y. C. Kwun, Optimal problem of regular cost function for retarded system, J. Korean Math. Soc. 35 (1998), no. 1, 115-126.
- [6] J. Y. Park, S. I. Nakagiri, and M. Yamamote, Max-Min controllability of delaydifferential Games in Banach spaces, Kobe J. Math. 7 (1990), 147-166.
- [7] K. Yosida, Functional analysis, Springer Verlag, New York- Heidelberg-Berlin, 1974.

Yong Han Kang and Jong Yeoul Park Department of Mathematics Pusan National University Pusan 609-735, Korea

Jin Mun Jeong
Division of Mathematical Sciences
Pukyong National University
Pusan 608-737, Korea
E-mail: jyepark@hyowon.pusan.ac.kr