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NEW MAXIMUM THEOREMS
WITH STRICT QUASI-CONCAVITY

WoN Kyu KiM AND JU HAN YOON

ABSTRACT. In this paper, we first prove the strict quasi-concavity
of maximizing function, and next prove a new maximum theorem
using Fan's generalization of the classical KKM theorem. Also an
existence theorem of social equilibrium can be proved when an ad-
ditional assumption on the constraint correspondence is assumed.
Finally, we give illustrative two examples of constrained optimiza-
tion problems.

1. Introduction

In 1959, Berge[2] first proved the maximum theorem which gives
conditions under which a “maximizing correspondence” will be closed,
and the original form is essentially as follows :

Let B and Y be topological spaces and let w : ExY — R be a
continuous real-valued function; let F : E — 2Y be a continuous and
compact valued correspondence; and, for each z € E, let M(z) .= {y €
F(x)|u(z,y) > w(z,2) for all 2 € F(z)}. Then the correspondence M is
upper semicontinuous and non-empty compoct volued.

Since then, this theorem, called Berge’s maximum theorem, has be-
come one of the most useful and powerful theorems in economics, op-
timization theory, and game theory. And there have heen many general-
izations and applications of Berge’s theorem, e.g., Leininger [9], Park [11],
Tian-Zhou [12] and Walker [13]. In their generalizations, continuity as-
sumptions on u and F have been relaxed; but the properties of continu-
ity assumptions of u and F are still needed in the different forms, e.g.,
graph-continuity in [9] and transfer-continuity in [12].
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On the other hand, there also have been several maximum theorems
which can be comparable to Berge’s theorem in different settings, e.g.,
[8]. And those theorems can be useful for nonlinear settings in several
economic models.

The purpose of this paper is two-fold. First, we shall prove the strict
quasi-concavity of maximizing functions, and next prove a new maxi-
mum theorem using Fan’s generalization of the classical KKM theorem.
Second, an existence theorem of social equilibrium can be proved when
an additional assumption on the constraint correspondence is assumed.
Finally, we give two illustrative examples of constrained optimization
problems.

2. Preliminaries

Let A be a subset of a topological space X. We shall denote by 24
the family of all subsets of A. If A is a subset of a vector space, we shall
denote by co A the convex hull of A. Let X,Y be topological vector
spaces and T : X — 2¥ be a correspondence {or a multimap). Recall
that a correspondence T is said to be convez [10] if AT'(z;) + (1 —
AT (z2) C T(Azy + (1 — A)zp) for each z1,z2 € X, and every A € [0,1].
A correspondence T : X — 2Y is said to be (1)} upper semicontinuous if
for each z € X and each open set V in Y with T'(x) C V, there exists
an open neighborhood U of z in X such that T(y) C V for each y € U
and (2) lower semicontinuous if for each x € X and each open set V in
Y with T(z) NV # 0, there exists an open neighborhood U of z in X
such that T(y) NV # 0 for each y € U, and (3) continuous if T is both
upper semicontinuous and lower semicontinuous.

Next we recall the continuity definitions of the real-valued function.
Let X be a non-empty subset of a topological space F and f : X —
R. We say that f is upper semicontinuous if for each t € R, {z €
X | f(x) > t} is closed in X, and f is lower semicontinuous if —f
is upper semicontinuous. And we say that f is continuous if f is both
upper semicontinuous and lower semicontinuous. For the other standard
notations and terminologies, we shall refer to [1, 3, 5, 10].

Now we recall some concept which generalize the concavity as follows :
Let X be a non-empty convex subset of a vector space E and let f :
X — R. We say that f is strictly quasi-concave on X [5]if for each
x1,%2 € X with x1 # 2, and every A € {0,1), we have

fQx1 + (1= N)z2) > min{f(z1), f(22)}



New maximum theorems 367

Then it is easy to see that if f is strictly quasi-concave on X, then for
each t € R, {z € X | f(z) > t} is convex. However, the converse does
not hold in general. In fact, if {z € X | f(z) > t} is convex for each
t ¢ R, then we have f(Azy + (1 — A)ze) > min{f(z1), f(z2)} for each
z1,72 € X with xy # zo, and every A € (0,1); i.e., f is quasi-concave
on X. It should be noted that if f,g are strictly quasi-concave, then
f + g is not strictly quasi-concave in general.

Let X be an arbitrary non-empty subset of a Hausdorff topological
vector space E. A multimap T : X — 2Z is called a KKM-map [7] if
co{zy,... ,xx} € UF_ T(z;) for each finite subset {z1,...,zx} C X.
Note that if T is a KKM-map, then z € T(z) for each z € X.

We shall need the following infinite dimensional version of the KKM
theorem due to Fan [6] :

LEMMA 1. Let X be a non-empty subset of a Hausdorff topological
vector space and let T : X — 2F be a closed valued KKM-map. If
T(xg) is compact for at least one xg € X, then NyexT(z) # 0.

Economic analysis makes substantial use of theoreins on the proper-
ties of maximizing functions. As an example, consider the problem of
optimal choices of the vector z, as part of a plan of optimal choices of
and y in the following constrained optimization programming problem :

Maximize f(z,y) subject to h(z,y) <0, x>0, y=>0.

In this paper, in order to apply the KKM theorem or fixed point
theorems, we shall replace the above maximization problem with the
following form :

Maximize g¢(x) subjectto = >0,
when ¢ is defined by

glz) == max flz,y),

where C(z):={y €Y | h(z,y) <0, y > 0}.

Maximization problenis of the above type arise in analysis of intertem-
poral allocation, where x is the vector of present values of the variables,



568 Won Kyu Kim and Ju Han Yoon

y is the vector of future values of the variables, and h(z,y) is a constraint
relating y to z. Other analysis in which this type of formulation is used
are models of the firm and various models of the consumer, where an
information structure of competition technology is introduced.

Solving the above constrained optimization problem, we shall need
the following :

LEMMA 2. Let X, Y be non-empty subsets of Hausdorff topological
vector spaces and let f : X xY — R be an upper semicontinuous
and strictly quasi-concave mapping on X x Y. If C : X — 2¥ js
an upper semicontinuous convex correspondence such that each C(z) is
non-empty compact, then the mapping g(z) := maxycc(q) f(z,y) is also
upper semicontinuous and strictly quasi-concave on X.

Proof. The upper semicontinuity follows directly from Berge’s theo-
rem [2, p.122]. We shall prove the strict quasi-concavity of g. For any
distinet x1, 22 € X, we let

f(@,9) = max  f(z,y), where y; € C(x1),
yEC(z1)

flz2,92) := max f(zz,y), where y2 € C(z2).
y&C (x2)

Then, for any A € (0,1), by the convexity of C, Ay; + (1 — A}yz €
C(Azy1 + (1 — A)zz); so we have

g(Az1 + (1 = A)zg)
= max )f(/\:m + (1= A)za,y)

yeC Az +(1—N)zg
> f(Azy 4+ (1 = Xz, Ay + (1 — Nyz)
= f(Mz,y1) + (1= A)(z2,32))
> min{ f(z1,11), f(z2,y2)} (since f(x,y) is strictly quasi-concave)

= min{ max T1,¥%), max T,
{yec(xl)f( 1,Y) yec(xz)f( 2,9)}

min{g(z,), g{zx2)},

which implies that g is strictly quasi-concave on X. g
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3. New maximum theorems with strict quasi-concavity

Using the maximum function g(z) := max,ecc(y) f(2,¥), we now in-
troduce a multimap ¢ : X — 2% defined by

o(z) = {yc X |g(x) <gly)} foreach zec X.

By assuming the compactness condition on ¢, we shall prove the follow-
ing new maximum theorem :

THEOREM 1. Let X be a non-empty convex subset of a Hausdorff
topological vector space, Y be a non-empty subset of a Hausdorff topo-
logical vector space and let f : X xY — R be an upper semicontinuous
and strictly quasi-concave mapping on X x Y. If C : X — 2V is
an upper semicontinuous convex correspondence such that each C(z) is
non-empty compact and ¢{xo) is compact for some zo € X, then there
exists a point £ € X such that

max f{z,y} < max f(Z, forall z e X.
Jmax f(e:y) o (&)

Proof. First note that z € ¢(z) = {y € X | g(z} < g(y)} for each
z € X. Since g is upper semicontinuous on X, each ¢(z) is a non-empty
closed subset of X. Furthermore, ¢ is a KKM-map. In fact, for each
finite subset {z1,...,2Zx} C X, we shall show that co{z;,... ,zx} C
UL é(z;). Suppose the contrary. Then there exists a point yo =
SF Nz ¢ Ub d(a), where A; € [0,1},i=1,... ,k, and 31 X =
1. Then g(z;) > g(yo) for all ¢ = 1,... ,k. By Lemma 2, g is strictly
quasi-concave on X hence the set {z € X { g{z) > g(yo)} is convex.
Therefore, we have

k
9(yo) = g(z Aizs) > g9(vo),

which is a contradiction. Hence ¢ is a KKM-map. Since ¢{xo) is compact
for some zy € X, by Lemma 1, there exists a point Z € X such that
Z € Ngex¢(z). This implies the conclusion

2) = < m 2y) = g(2) forall z€ X,
g{z) yrengé)f(w Y) yeg();)f(my) g(¢) forall z O
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When X is compact, the compactness assumption on ¢{xg) is auto-
matically satisfied since ¢ is upper semicontinuous. In this case, if we
assume the additional assumption on the constraint correspondence € in
Theorem 1, we can prove a new existence theorem of social equilibrium
which was introduced by Debreu [4] :

THEOREM 2. Let X be a non-empty compact convex subset of a
locally convex Hausdorff topological vector space and let f: X x X - R
be an upper semicontinuous and strictly quasi-concave mapping on X x
X. Let C: X — 2% be an upper semicontinuous convex correspondence
such that each C(z) is non-empty compact. Furthermore, assume that
for each z € X, g(z) < g(y) for ally € C(x).

Then there exists a point £ € X such that

ZzeC(z) and max f(z,y) < max f(:c y) forall ze X.
yeC(z) veC(£)

Proof. Since X is compact and ¢ is upper semicontinuous on X, each
#{z) is non-empty compact in X. Hence, as we have seen in the proof
of Theorem 1, let K := Nyex¢(z) be a non-empty compact subset of
X. Now we shall show that K is convex. Let zq,z» be distinct points
in K and A € [0,1] be arbitrary. Then for every z € X, we have

> d >
yé%a&)f(ml, )] max flz,y) an me%xz)f(a:z, ) max flez,u);

hence maxyecc(z,y f(T1,y) = max,co(,) f(z2,y). Let 2o := Az + (1 -
A)zz. Then we shall show that max,cc(zq) f(%o,¥) > max ey flx, )
for every z € X. Suppose the contrary. Then there exists a point T € X
such that t = maxyco(ey) f(%0,¥) < maxyec(z) f(F, y). Note that

t< reng(:»c)f(x ) < [ Joax flz1,y) = ygé%f?)f(wz,y)

Since g is strictly quasi-concave, the set A = {x € X | g{x) > t} is
convex and z;, 22 € A, so that zg = Az; + (1 — A)ze € A. Hence
MaXyec(zy) f (Zo,y) > t, which is a contradiction. Therefore K is con-
vex. In order to obtain the conclusion, it remains to show that there ex-
ists a point & € K such that & € C(Z). We next claim that C(K) C K.
Suppose the contrary. Then there exists a point y; € K such that
C(yo) € K, i.e., there exists a point 29 € C(yg) such that zg ¢ ¢(z;) for
some 7 € X. Therefore,

1 < 1 <
Jmax Flz0,y) foex flz1,9) fax f(yo,y)-
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However, by the assumption, g(yo) < g(zo), and so we have a contra-
diction. Therefore, C maps the non-empty compact convex subset K of
a locally convex Hausdorfl topological vector space into itself. By the
Fan-Glicksberg fixed point theorem [6], there exists a point £ € K such
that £ € C(&). This completes the proof. 0

REMARKS. (1) Theorem 2 is different from Berge’s maximum theorem
in the following aspects :
(i) f need not be continuous on X x Y, but f need to be strictly quasi-
concave ;
(ii) C need not be continuous on X, but C is assumed to be convex and
satisfy the additional assumption.

(2) As we mentioned, in maximization problems of economic analysis
of intertemporal allocation included models of the firm and various mod-
els of the consumer, when f is strictly quasi-concave and ' is assumed
to be convex, then the maximizing function g is suitable to Theorem
2: but the previous maximum theorems in [4, 9, 11, 12, 13| can not be
applied.

Finally, we shall give two illustrative examples of Theorems 1 and 2.

ExampLE 1. Consider the following constrained optimization prob-
lem :

Maximize f(x,y) = zy subject to z+4y <1, and z € (0,1], y € [0,1].

Then X := (0,1} is non-compact convex and Y := [0,1] is compact
convex, and we have the corresponding maximizing function

x) = max f(z,vy},
9(x) yec(m)f( )

where C(z) = {yeY |z+4dy<1}={y €Y |y < 1(1 —x)} for each
x € X for this optimization problem. Then we can easily check that
C : X — 2 is upper semicontinuous and convex on X and each C(z)
is non-empty compact convex in Y. In fact, for the convexity of C, we
let two distinct points x1,z2 € X and A € [0, 1] be arbitrary. Then we
can see that AC(z1) + (1 — A)C(z2) € C(Axy + (1 — A)zy); hence C is
convex. Also the following calculation shows the strict quasi-concavity
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of f(z,y) : for distinct two points (z1,y1), (T2,y2) € X x Y and every
A € (0,1), we first let o = min{z;y1,22y2}; then

f(A(-'Ehyl) +(1- /\)(&"2,1!2))
= (Az1 + (1 — Aza) - (w1 + (1 — A)y2)
= Azyy + (1 - A)?z2y2 + A1 — A)(z1y2 + z211)
> Az + (1 — A)’zaye + A1 — A\)2y/Z 1512202
> aM+(1-AP+201-A)] =a;

which implies the strict quasi-concavity of f(z,y) on X x Y. Finally, we
have that

o) ={ee X 155= mm I(5) < o 1o} = {3}

is non-empty compact. Therefore, all the hypotheses of Theorem 1 are
satisfied so that we can obtain the optimal solution % € X such that

1 1
max f(z,y) € max (v, )=w for all z € X.
ygc(m)f( y) yec(%)f 5Y) =16

However, C does not satisfy the additional assumption of Theorem 2,
and we can confirm that 1 ¢ C(3).

ExXAMPLE 2. Next we consider the following constrained optimization
problem :

Maximize f(z,y) =y subjectto r—y <0; and =z, y € [0,1].

Let X = Y := [0,1] be a compact convex set, and we have the
corresponding maximizing function g(x) = max,cc() f(2,y), where
for each z € [0,1],

C(z) := [z, 1]

for this optimization problem. Then we can easily check that C : [0, 1] —
2(0.1] is upper semicontinuous such that each C(z) is non-empty compact
convex in X. And we can see that C is a convex correspondence on X.
In faet, for the convexity of C, we let two distinct points z1,22 € X
and A € [0,1] be arbitrary. Then the simple calculations show that
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AC(z1) + (1 = A)C(z2) € C(Azy + (1 — A)x2); hence C is convex. And
it is easy to check that for each z € X, g(z) < g(y) for all y € C(x).
Finally, as in Example 1, we can see the strict quasi-concavity of f(z,y).
Therefore, all the hypotheses of Theorem 2 are satisfied, so that we can
obtain the social equilibrium solution 1 € X such that

1€C(1) and max f(z,y) < max f(l,y)=1 forall z€[0,1].
yeC(x) yeC(l)
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