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SOME CURVATURE CONDITIONS OF
n-DIMENSIONAL CR-SUBMANIFOLDS OF (n—1)
CR-DIMENSION IN A COMPLEX PROJECTIVE SPACE

JIN SUK Pak* aND Won-Ho Soun

ABSTRACT. The purpose of this paper is to study n-dimensional
C R-submanifolds of (n — 1) C R-dimension immersed in a complex
projective space CP{"tP)/2 and especially to determine such sub-
manifolds under some curvature conditions.

1. Introduction

Let M be an n-dimensional C R-submanifold of (n—1) C R-dimension
isometrically immersed in a complex space form M (ntp)/ 2(c). Denoting
by (J,5) the Kahlerian structure of M™+P)/2(c} it follows by definition
(cf. 11, 3, 5, 6, 9, 12, 16]) that the maximal J-invariant subspace

Dy =T, MNJT,M

of the tangent space T, M of M at each point z in M has constant
dimension {n — 1). So there exists a unit vector field U; tangent to M
such that

Dt = Span{l:}, "z e M,

where D denotes the subspace of T. M complementary orthogonal to
T... Moreover, the vector field Ny defined by

(].].) Nl = JU]
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is normal to M and satisfies
JITM C TM & Span{N. }.
Hence we have, for any tangent vector field X and for a local orthonormal

basis {N1, Ny}a=2,. . p of normal vectors to M, the following decompo-
sition in tangential and normal components :

(1.2) JX = FX +u! (X)Ny,
(1.3) JN,=-U,+PN,, a=1,...,p
Since the structure (J,7) is Hermitian and J? = —I, we can easily see

from (1.2) and (1.3) that F' and P are skew-symmetric linear endomor-
phisms acting on T, M and T, M, respectively and that

g(FUOHX) = 7“‘1(X)§(N11PNCE):
g(Ua, Ug) == 5(,3 -— E(PNQ, PNg),

where T, M+ denotes the normal space of M at z and g the metric on
M induced from §. Furthermore we also have

(1.6) 9(Ua, X) = uH{X)d10

and consequently

(1.7) gU1, X)=u!(X), Us,=0, a=2,...,p.

Next, applying J to (1.2) and using (1.3) and (1.7), we have
(1.8) F2X = - X+« (XU, o« X)PN, = —u'(FX)Ny,
from which, taking account of the skew-symmetry of P and (1.4),
(1.9) w'(FX)=0, FU =0, PN; =0

Thus (1.3) may be written in the form

(1.10) JN, =-U;, JN,=PN.,, a=2,...p
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Moreover we may put

P
(1.11) PN,=> P.sNs, a=2,...,p,
p=2

where (F,3) is a skew-symmetric matrix which satisfies
(1.12) Z P = ~0op, @F=2,...,p

These results tell us that (F, g, U1, u!) defines an almost contact metric
structure on M (cf. [3, 5, 6, 12]). Recently Okumura and Vanhecke {12]
studied the normal almost contact metric case when M(™t2)/2(¢) is a
complex projective space CP"+P}/2 and proved

THEOREM O-V. Let M be a C R-submanifold of (n—1) CR-dimension
isometrically immersed in CP"tP)/2 and let the normal field N1 be par-
allel with respect to the normal connection. If the almost contact metric
structure (F,g,U1,u') induced in M is normal, which is equivalent to
the condition A|F = FA, on M, then 7~} (M) is locally a product of
M, x My where My and M, belong to some odd-dimensional spheres
and A, denotes the shape operator corresponding to Ny (7 is the Hopf
fibration S*+P+1(1) — CPpn+el/2),

On the other hand, when #=1(M) is (1) an Einstein space or (2)
a locally symmetric space, it is well known (cf. [2, 7, 8, 10, 11]) that
7~1(M) has parallel second fundamental form. Projecting the quantities
on 7 (M) onto M in CPUtP)/2 we can consider C R-submanifolds of
(n—1) C R-dimension with the conditions corresponding to (1) or (2). In
this paper we shall study such C R-submanifolds of (n—1) CR-dimension
isometrically immersed in CP("*+P)/2 by using Theorem O-V.

2. Fundamental equations for the C R-submanifold

We first et M be as in section 1 and use the same notations as shown
in that section. We denote by V and V the Levi-Civita connection
on M™*tP)/2(c) and M, respectively. Then the Gauss and Weingarten
equations are given by

(2.1) VxY =VxY +h(X,Y),
(2.2) VxNy=—-AaX+V%Ny, a=1,...,p
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for any tangent vector fields X,Y to M. Here V' denotes the normal
connection induced from V in the normal bundle TM+ of M, and h and
A, the second fundamental form and the shape operator corresponding
to N,, respectively. It is clear that h and A, are related by

P
WX, Y) =" g(AuX,Y)N,.
=1
Especially we put
P
(2.3) ViNa = sap(X)Ng.
B=1

Then (sqg) is the skew-symmetric matrix of connection forms of V.
Now, by using (2.1)-(2.3) and taking account of the Kihler condition
VJ = 0, we differentiate (1.2) and (1.3) covariantly and compare the
tangential and normal parts. Then we can easily find that

(2.4) (VxEY =u (V)4 X — g(A, Y, XUy,

(2.5) (Vxu')(Y) = g(FALX,Y),

(2.6} VxU = FA X,

(2.7) g(AuU1, X) = =) s15(X)Psa, a=2,...,p
B=2

for any X,Y tangent to M.
In the rest of this paper we suppose that the normal field N1 is parallel
with respect to the normal connection V. Hence (2.3) gives

(28) 510 = 0, a:23"'1p7
which together with (2.7} yields
(2.9) AU =0, a=2,...,p.

On the other hand the ambient manifold M™+P)/2(¢) is of constant
holomorphic sectional curvature ¢ and consequently its Riemannian cur-
vature tensor R satisfies

R(X,Y)Z = {3V, 2)X —3(X,2)Y +3(JV,2)JX
g, 2)JY — 29(JX, V) 7}
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for any X,Y, Z tangent to M("t7)/2(c) (cf. [15, 16]). So, the equations
of Gauss, Codazzi and Ricei imply

R(X,Y)Z :g{g(y, 2)X — g(X, Z)Y + g(FY, Z)FX
(2.10) - g(FX,Z)FY — 29(FX,Y)FZ}
+ 3 {g(AaY, 2) A X — g(AX, Z) ALY},

(VxADY — (Vv A)X

(2.11) _ E{Q(X’ UFY — g(Y, U0 FX — 29(FX,Y)U,},

(2.12) [A41,A,] =0, a=2,...,p

for any X,Y, Z tangent to M with the aid of (2.8), where R denotes the
Riemannian curvature tensor of M.

3. Fibrations and immersions

In this section n-dimensional C'R-submanifolds of (n — 1) C'R-dimen-
sion isometrically immersed in CP("*P)/2 only will be considered. More-
over we shall use the assumption and the notations as in section 2.

Let $™P+1(q) be the hypersphere of radius a(> 0) in C(*TP+2)/2 the
complex space of complex dimension (n + p + 2)/2, which is identified
with the Euclidean {(n-p-2)-space R"*7+2, The unit sphere §7P+1(1)
will be briefly denoted by §71Ptl. Let 7 : §7tPtl — CpP(ntp)/2 he
the natural projection of $7tP*1 onto CP*P)/2 defined by the Hopf-
fibration §! — §1HP+l — C P2 Ag i well known (cf. [3, 5, 12,
14, 15]), S™+P*! admits a Sasakian structure £ and each fibre T '(z)
of & in CP"+P)/2 jg a maximal integral submanifold of the distribution
spanned by £. Thus the base space CP("tP)/2 admits the induced Kéhler
structure of constant holomorphic sectional curvature 4 (cf. [3, 5, 12, 14,
15}). Moreover we have a fibration 7 : #~'(M) — M which is compatible
with the Hopf-fibration 7. More precisely speaking 7 : m~1(M) — M is
a fibration with totally geodesic fibers such that the following diagram
is commutative : )

T~ 1(M) L, gntptl

o |7

M — ., gpnte)/4
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where ¢ : ©=Y (M) — $"'2*L and i : M — CP™+P)/2 gre isometric
immersions.

Now, let £ be the unit vector fields tangent to the fibers of #~!(M)
such that ¢,§ = £ (In what follows we shall delete the ¢’ and ¢, in our
notation.) Furthermore we denote by X* the horizontal lift of a vector
field X tangent to M. Then the horizontal lifts N} (e« = 1,...,p) of the
normal vectors N, to M form an orthonormal basis of normal vectors
to 7~1(M) in §7FPTI. Let A}, and s[5 be the corresponding shape
operators and normal connection forms, respectively. Then, as shown in
(3, 4, 5, 12, 13, 14, 15}, the fundamental equations for the submersion
are given by

(3.1) Vx ¥ = (VxY) + g (FX)",Y),
(3.2) 'Vx-& ="V X* = -(FX)",
where ¢' denotes the Riemannian metric of 7=! (M) induced from b’ that

of §7tP+1 and 'V the Levi-Civita connection with respect to ¢’. The
gimilar equatlons are valid for the submersion 7 by replacing F' (resp. )
with J (resp. {) respectively. We denote by V and 'V the Levi-Civita
connection for § and the normal connection of 7~ (M) induced from v,
respectively. Since the diagram is commutative, ¥ x- N implies

WL N — ALXY = (VN Y+ GUFX)  NDE
= _(AQX) +9(UaaX) €+ (viNa)*

because of (2.2), (2.5), and (3.1), from which, comparing the tangental
and normal parts, we have

(3.3) ALX" = (AaX)* — g(Ua, X)7¢,

(3.4) 'V.NI = (VxN.)"

Next, calculating 65]\‘: and using (2.2), (2.5), and (3.2), we have
'VENL — ALé = —(FN.)* = U} — (PN,

which yields

(3.5) ALl =-Ug,
(3.6) 'VENE = —(PN,).
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Hence (3.3) and (3.5) with @ =1 and (3.6) imply

(3.7 A X" = (A1 X)" = g(U, XY,
(38) g = -U",
(3.9) Soa(X7) = 80p(X)",  505(8) = —Pag.

First of all we recall the co-Gauss equations for the submersion 7 (cf.
[4, 13, 14, 15]). Taking account of (3.1) and {3.2), we have
'Vx:'Vy-Z" = (VxVyZ) +{g (FX)", (Vy Z)")
(3.10) +§((FVXY)Y, Z*)+ § (VX F)Y)", Z%)
+ g ((FY)', (Vx2))} - g ((FY)", Z2)(FX)",

(3.11) [X* V¥ =[X,Y]" + 2/ ((FX)",Y")§, [X*,§=0.

Using these equations and taking account of (2.4) and (2.10) with ¢ = 4,
we can eagily see that
(3.12)

'R(X*, YN Z* = g(Y, Z)" X" — (X, Z)*Y*

+ 5 {9(AaY, ZY (AX) - g(A4aX, 2)*(AY )"}
+ ¢ ({u(Y) A4 X — w(X)A Y}, 27,

where 'R denotes the Riemannian curvature tensor of 7~ (M). Making
also use of (3.1) and (3.2), we have

'Vx-'Vy-& = —{(VxF)Y + F(VxY)}" — ¢ (FX)", (FY)")¢,

'Ve'Vy X* = —(FVy X)* — {g(F?Y, X)* + g(FY,FX)"}¢,

Uy VX" = ~{(Vy F)X + F(Vy X)}* — g(FY, FX)°¢,

V' Vx-€ = {-X + u(X)U},
from which, using (1.8}, (2.4), (3.11) and the fibre being totally geodesic,
we can easily obtain
(3.13) '‘RIX™, V") = — {u(Y)A1 X —u(X)A Y},
(3.14) 'R(Y™,6)X” = — {u(X)A Y }*
- {g(Y: X)* - U(Y)*Q(U, X)*}§:

(818)  'R(EX")E ~{~X +u(X)U}".
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Putting Z = U in (3.12) and using {2.9), we have
R(X* YU = (Y)Y X' —u(X)'Y"
(316) + Q(A1Y, U)*(A]_X)* - g(A]_X, U)*(A1Y)*
+ g(u(Y)AIX - H(X)AIY} U)*ga

from which, differentiating covariantly in the vertical direction £ and
using (3.2) and (3.16), we find

(V'R)(X*, Y )U* = g(AY,U)* (A FX — FA, X)"

(3.17) — g(A1 X, U) (AL FY — FAY)
— (AL FX, UY (ALY + g(ALFY, U)* (A; X)*
(Y)Y g(A FX,U) —u(X) g(A FY,U) .

Thus we have

THEOREM 1. Let M be an n-dimensional C R-submanifold of (n —
1) CR-dimension isometrically immersed in a complex projective space
CP(™+P)/2 and let the normal field Ny be parallel with respect to the
normal connection. If ((V/R}X*, Y*)U* = 0 and if u(A,U) # 0 at
least one point of M, then m#='(M) is locally a product of M, x M,
where M; and Ms belong to some odd-dimensional spheres.

Proof. ('V¢'R)(X*,Y*)U* =0 and (3.17) imply

— g(A1 X, U) (A FY — FAY)*

(8-18) ~ AFX, D) (ALY
+ g(AlFY, U)*(A]_X)* = 0,
(3.19) w(YY g(A FX,UY —u(X) g(AL FY,U)* = 0.

Putting ¥ = U in {3.19) and using (1.9), we have
(3.20) FAU = 0.
Substituting ¥ = U in (3.18) and using (3.20), we get

(3.21) MAFX — FA1X) =0,
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where we put A = u{A;U). On the other hand, using the first equation
of (1.8) and (3.20), we can easily see that

(3.22) AU = U,
from which, differentiating covariantly along M and using {2.6),
g(VxADY U) +g(FAL X, A1Y) = (XA\)u(Y) + Ag(FA1 X, Y).

Taking the skew-symmetric part of the above equation and using (1.6),
(1.9), (2.11) with ¢ =4 and (3.21), we obtain

- 29(FX,Y)+29(FA, X, AY)
= (XNu(Y) — (Y Nu(X) +22g(FA X, Y).

(3.23)
Putting Y=U in (3.23) and using (1.9) and (3.22), we have

{3.24) XA = fu(X),

where we put 8 = UA. (3.23) and (3.24) imply

(3.25) —g(FX,Y)+ g(FA X, A1Y) = Ag(FAL X, Y).
Differentiating (3.24) covariantly along M and using (2.5), we get

YXA = (YB)u(X) + f{g(FALY, X) + u(VyX)}.

Taking the skew-symmetric part of the above equation and using (3.24),
we find

(YBu(X) — (XB)u(Y) + Bg(FALY + A1 FY, X)),
from which, putting ¥ = U and using (1.6), (1.9}, and (3.22),
XB = (UB)u(X)
and consequently

(3.26) B(FAX + AL FX) =0.
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Therefore FA; X + A1 FX = 0 on the open set S := {z € M |8(z) # 0}.
Taking account of (3.21), we have AFA; X =0 on S, which and (3.25)
give
MFX,Y)=0.

Hence A = 0 and consequently 8 = (0 on S, which is a contradiction.
Thus we have § = 0 identically on M, which and (3.24) yield that A is
constant. Therefore, if u(A;U) # 0 at least one point of M, then (3.21)
gives

AFX-FA X =0,
which together with Theorem O-V yields our result. a

Differentiating (3.13) covariantly in the direction of £ and using (3.2)
and (3.13), we have

(Ve R)(X™,Y™)¢

(3.27) = {uY)FA — A F)X} — {(u{X)(FA, - ALF)Y}".

Thus we have

THEOREM 2. Let M be an n-dimensional CR-submanifold of (n —
1) CR-dimension isometrically immersed in a complex projective space
CPt2)/2 gand let the normal field N, be parallel with respect to the
normal connection. If (V' R)(X*,Y*)¢ = 0, then = (M) is locally a
product of My x My where M, and My belong to some odd-dimensional
spheres.

Proof. ('V/R)(X*,Y*)U* =0 and (3.27) imply
w(YHFA — A )X —u(X)(FA, - A F)YY =0,
from which, putting ¥ = U, we obtain
(3.28) (FA, - A F)X = u(X)FAU.

Taking the inner product of (3.28) with U and using (1.9), we find
FA,U = 0, which together with (3.28) yields

FAl—A]_F:O.

Combining this equation with Theorem O-V gives our result. ]
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COROLLARY. Let M be an n-dimensional C R-submanifold of (n —
1) CR-dimension isometrically immersed in a complex projective space
CP0+p}/2 and Jet the normal field Ny be parallel with respect to the
normal connection. If'V¢'R = 0, then 7' (M) is locally a product of
M, x My where M, and M, belong to some odd-dimensional spheres.

Finally we differentiate (3.14) covariantly in the direction of £. By
means of (3.2) and (3.14) we can easily find

(329)  (VR)Y",OX" = {u(X)(FA - AF)YY.
If (V/R)(Y*, £)X™ =0, then (3.29) gives

WX)(FA; — A F)Y,
from which, putting X = U and using (1.6), we have

FA]_—AlF:O

Thus we have

THEOREM 3. Let M be an n-dimensional C R-submanifold of {(n —
1) C R-dimension isometrically immersed in a complex projective space
CP+P)/2 and let the normal field N, be parallel with respect to the
normal connection. If (V¢'R)(Y*,£)X* = 0, then 7~ (MY} is locally a
product of My x My where M, and M, belong to some odd-dimensional
spheres.

REMARK. Under our assumptions it can be easily verified from (3.15)
that (‘V¢'R)(&, X*)¢ = 0 identically on 71 {(M).
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