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A NOTE ON UNIQUENESS AND STABILITY
FOR THE INVERSE CONDUCTIVITY
PROBLEM WITH ONE MEASUREMENT

HyEONBAE KANG AND JIN KEUN SEO

ABSTRACT. We consider the inverse conductivity problem to iden-
tify the unknown conductivity k as well as the domain D. We show
that, unlike the case when k is known, even a two or three di-
mensional ball may not be identified uniquely if the conductivity
constant k is not known. We find a necessary and sufficient condi-
tion on the Cauchy data (u|sq,¢) for the uniqueness in identification
of £ and D. We also discuss on failure of stability.

1. Introduction

Let 2 be a simply connected domain with Lipschitz boundary &€ in
R" (n = 2,3). Let D be a subdomain compactly contained 2. Let k > 0
(k # 1) be a constant. We consider the inverse problem of identifying
the unknown conductivity constant & as well as the unknown domain D
‘from the relation between a current density g (Neumann data) applied to
the boundary 90 and the resulting voltage potential v (Dirichlet data)
measured on 9Q. For a given current density g € L*(9Q) with [, 9 =0,
the voltage potential « in €2 satisfies the following Neumann problem

V-((1+(k—-1)x(D))Vu) =0 in €,
(1.1) Plk,D,g] du =gc L%(BQ) on A%, / udo = 0,
v 0
where x (D) is the characteristic function of D and v is the outward unit
normal vector to 9€2. Define
(1.2) Aklp(g) = ulpn on 851

where w is the solution to Pk, D, g].
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When % is known, several classes of domains D within which the
global uniqueness with single measurement holds have been found.
Among them are classes of ploygons, polyhedra, discs, and balls [7, 4,
10, 11, 12, 14]. Note that all the domains D belonging to the above
mentioned classes are simply connected and hence 2\ D are connected.
In one dimension where the uniqueness fails completely [8], §2\ D is not
connected. Even for n > 2, there are examples of two different domains
Dy and D such that Ap, (g) = Ap,(g), i.e., the uniqueness fails. One of
them is simply connected, but the other is not. See [1}. By perturbing
one of domains, it is not hard to prove that the stability does not hold
even within the class of simply connected domains. These examples are
given in Section 4 at the end of this paper.

The main interest of this paper lies in the uniqueness question when
k is also unknown: whether Ay p,(9) = Ak, p,(g) implies D1 = Do
and k; = k2. We show that, unlike the case when & is known, even
a two or three dimensional ball may not be identified uniquely if the
conductivity constant k is not known. In fact, we find a necessary and
sufficient condition on the Cauchy data (u|sq,g) for the uniqueness in
identification of k and 2. In particular, we show that there are infinitely
many pairs (k, D) which produce the same Cauchy data on 9€2. This
result forms a sharp contrast to the previous results of uniqueness of balls
when k is known [11, 12]. There it is proved that a single measurement
corresponding to any nonzero Neumann data is enough for the unique
identification. As a consequence of the result, we will give a sufficient
condition on the Neumann data g for the unique identification of k and
D. These results are given in Section 3.

This paper is organized as follows: In Section 2, we review the repre-
sentation formula for the solution of the problem P[k, D, g]. In Section
3, we show the failure of the uniqueness in identifying k£ and D. In
Section 4, we remark on the failure of stability.

2. Layer potential approach

Since the arguments of this paper rely on the representation formula
of the solution to Pk, D, g] obtained in [11], we first recall it and derive
some interesting consequences of it.

Let D, Dy, and D, be Lipschitz domains compactly contained in £2
and u be the weak solution to the problem Pk, D, g]. Let Sp and Dg be
the single and double layer integral operators on d{1 for the Laplacian,
respectively. Sp also denotes the single layer operator on D. Then the
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solution to the problem P[k, D, g] can be uniquely represented as

(2.1} u=H 4+ Sply) in 0
where H is a harmonic function in £ defined by
(2.2) H(z) = ~Sa(g)(z) + DalAe,p(g))(z) 2€%,
and the density function ¢ is determined by H and D:
k+1 oH
. = | —>—=T - K} .
(2.3) © (Q(k—l) K ) ( IaD) on 8D

If we put u® = ul, 5 and v} = u|p, then

_k—10u°

YTk o

For detailed proofs of these facts and definitions of operators, we refer
to [11] and [13].

Suppose now that k) = ks = k and that Ap, (9) = Ap,(g). Let u;(j =

1,2) be the solution of P[k,D;,g]. Then it follows from the unique

continuation that SDI(%;) = SDQ(%‘:Z) in the connected component of

R™\ Dy U Dy containing 0€2. Hence, for any simply connected Lipschitz
domain g containing D; U D3, we obtain

0
[ s@sn. (Gha@o = | otm)so,(
for all ¢ € L?(68p) and therefore

Ous S
fa o, ;: (y)Sa,dly)doy = /8 3”‘:2 (4)Sq, ¢ (y)doy

Da

_ aut s 2
= (k- 1)5 in L*(8D)-sense.

o w)do

for all ¢ € L2(88). Hence for all harmonic function kb in Qg

duf _ ous§
| FEwhwde,

Using the above identity and the Runge approximation, we may ob-
tain the uniqueness result from full measurements: Ap,(g) = Ap,(g)
for all g € LZ(89) implies Dy = Dy. We will not give the detail of the
proof because the uniqueness with full measurements has been proved
by Isakov in the paper [8].

Now let us suppose that % is close to 1. Observe that

ous L
0= k)M o)) on oD,

(2.4)
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where A = -f,-j_—lﬂ. By (2.4),

/81)1 (AT - K*Dl)_l(%—fjlm)(y)h(y)day

. OH
= (A = KD,) 1(5‘—|D2)(y)h(9)d%-
HD% v
Since
OH 18H 1 1 oH
* y—1 _ * * y—1
(’\I_’CDj) (—f)—i/|Dj)_ X5;+ﬁKDj(I~X]CDj (79;"1)3;)}
we obtain
(2.5) f VH-Vh—/ VH -Vh= lE
D1 Da A
where
_ * 1 * -1 3_H * 1 * -1 a_H
B= [ K(-550) 7 Gyln - [ Ko, I=3K5,)" (G o)

It follows from the L2 —boundedness of K p; [6, 15] that there is a positive
constant C' depending only on the Lipschitz character of D; so that

2
/ 1 OH <c f oH
aD; oL,

* * y—1
Kp,(I =KD, (E[Dj) B
E < C|\VH| t29p,080) 1R 22(3D108D2)-

2

Hence

Using an idea of P. Novikov as appeared in [9, Theorem 2.2.1}, we have
the following Lemma for a special H.

LEMMA 2.1. Suppose that D; is a star-shaped region with respect to
the origin. If H is a non-constant linear function, then

(2.6) Dy \ Dol + 1Dy \ Du| < %

In particular, if k — 1, then the measure of the symmetric difference of
Dy and D2 converges to zero.

Proof. We may assume that H = z;. Then the equation (2.5)

becomes
1

D:h— D:h=—F
/1‘31\_13 ’ D2\D1 ? IM
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for all harmonic function in a neighborhood of D;UD;. Since z-V(D;h)
is also a harmonic function,

1
(2.7) / x-vD;h— / z-vDjh=—E.
a(D1\D3) 8(D2\D7) A

Let £1 =38D1\ Dy and £3 = 3D3\ D;. Asin [9, Lemma 1.7.4], we can
choose a sequence of harmonic function {h.,} so that
iy vo0 Dibm =1 in L1(%)),
limy, oo Djbm =0 in L1(Z5).
Since
limsupf z-vDjhy, <0,
8(D2\D1)

m—oo

_ by passing to the limit in (2.7), we have

f Tv< 2,
8(D:\D3) |A

n|Dy \ Da| < %E

or

In the same way, we can prove that

R C
n|Ds \ Dp| < WE

This completes the proof. U

3. Identification of k and D

For this section the conductivity constant % is also unknown to be
identified and we turn to the question of uniqueness in identification of
k and D.

Let Dy be a ball in & € R* (n = 2,3). Let up be the solution to
the Neumann problem Pk, Dy, g] with a given nonzero Neumann data
g. As in the equation (2.2}, let

(3.1) Hy = —Sa(g) + Da(uolon)  in Q.

THEOREM 3.1. (i) Hp is homogeneous with respect to the center
xg of Dy, ie., Ho(r(x — 20)) = r"Ho(x — xo) for all > 0 and
for some integer n > 0, if and only if there are infinitely many
pairs of (k, D) where D is ball contained in 2 such that Ay p(g) =
Aku,Do (g) on 951
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(ii) If Hy is not homogeneous with respect to the center zo of Dy if
and only if Ag p(g) = Ak, D, (g) on 98 (D is a ball) implies k = ko
and D = Do.

REMARK. A part of what Theorem 3.1 claims is that there are
Neumann data g such that corresponding harmonic functions H are
homogeneous. As mentioned in Introduction, it is interesting to compare
Theorem 3.1 with the uniqueness of the balls obtained in [11] and [12].
It is proved that if k is known, then a ball can be uniquely determined
by a single measurement corresponding to any nonzero Neumann data

q.

According to Theorem 3.1, in order to identify a ball D and &, we
need to choose the Neumann data g so that the corresponding harmonic
function H is not homogeneous with respect to any point z € §2. For
example we have the following corollary.

COROLLARY 3.2. If g € L3(8Q) is not continuous at a point p €
99 where 0%} is continuously dIHerentJabIe then Ag, p,(g9) = Ak, 0,(9)
imph'es kl = kg and D1 =D

We prove Theorem 3.1 and Corollary 3.2 in the following sequence of
lemmas.
Put u® = u]ﬂ\ﬁ and ! = u|p. Then the transmission conditions

o = k%‘j and u¢ = u* hold on 89 in the L% sense. The following lemma
gives a general solution to the equation V- ((1 + (k — 1)x(D))Vu) =0
in ) when D is a 2 or 3 dimensional ball. This result is obtained in [12].

LEMMA 3.3. Let D = By(a) be a ball in ? C R™ (n = 2,3). Then the
solution u to Plk, D, g] is of the following form.

Ifn =12, then
ul(z) = H(x) — MH (= ) (a)) x €D,
(3.2) ue g
(x)=H{z)— X Z |$ |2n (z,a) z€Q\D,

where H is a harmonic function in € and

D*H(a . k-1
H(”)(m,a)= Z %(3}—0‘) s )\=m

||=m
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If n =3, then
(3.3)

w(z) = H(z) )\23 1

°° n d2n+1

u®(z) = H{z) — )\Z

—{ 3n+ 1|z ~alntl

H(")(a:,a) ze D,

H™z,a) zeQ\D,

where H, H™(z,a), and X are as above.

Proof It is a straightforward computation to check that u! and u®
in (3.2) and (3.3) satisfy the transmission condition. Conversely, if » is
the solution to Pk, D, g}, then by the representation formula (2.1) and
(2.2),

u = H + Sply), H = -8a(g} + Da(Ax p(g)).

By the uniqueness of this representation, u must be of the form (3.2) if
n =2 or (3.3) if n = 3. This completes the proof. O]

THEOREM 3.4. Let Dy and Dy be two balls in Q. Let g € L3(8Q) be
any nonzero Neumann data. If Ay, p,(9) = Ag,.p,(g9) on 092, then Dy
and D5 are concentric.

Proof. This is proved in [12] when k; = k3. However, the argument
in [12] does not rely on the conductivity constants k;. O

Proof of Theorem 1.1. We will only prove the 3 dimensional case. 2
dimensional case is even simpler and can be proved in the same way.

Let D be a ball in Q@ C R? with conductivity k. Let « be the solution
to Pk, D, g].

Suppose now that Ay, p,(g9) = Agp(g). By Lemma 3.4, Dy and D
are concentric. Assume without loss of generality that Dy = By, (0) and
D = B4(0).

Let H be the harmonic function given in (2.2}, namely,

H = —Sa(g} + Da(ulsn)-

Then H = Hyin Q. Let {Y;* : m =0,--- ,2n, n = 1,2,---} be the
spherical harmonics in S? (see [5] for spherical harmonics). If

H(z +Z Za =Y,™(&), r=|:c|,:z~=%,

then by Lemma 3.3
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oo . n d2n+1 2n o
ue(m)zH(O)—l-Z [r _AS_ni_l'r”le Zan Yo E) Jzf>d
n=1 m=0

where A = £1. Therefore u® = u§ in |2| > max{d,do} if and only if

(3.4) AdPHIoM = Nd2" ™, for every n,m
_ kg—1
where Ag = .

If Hy is homogeneous with respect to 0, then there is only one n such
that o™ # 0. This means that there are infinitely many pair (k, D)
which satisfies (3.4). On the other hand, if Hy is not homogeneous with
respect to 0, then there are at least two different n’s, say n; and ng, such
that o' and of)? are not zero for some m and mg. Again by (3.4),
one can easily see that

do\ 7Tt A d ) 2+
(&) -4 ()
It is possible only when d = dy and k = kg. This completes the proof. [
REMARK. Let @ = B(0,1) C R2. According to Lemma 3.3,

; k—1

i = —_— — n 9 <

u'(r,8) (1 k+1)r COS: r<d,
k—1d"

& = n e ———— <

u®(r,8) = r" cosnd PR cosnf d<r<l

satisfies V- ((1 4 (k — 1)x(D))Vu) = 0 in Q where D = By(0). Note

that e _
¢ (n -+ ;dzn) cosnd on 99.

Ov k+1

Note also that g has the index 0 if n = 1, ie., the set {g > 0} is
connected. So, even if the Neumann data g has index zero, Ay, p,(g) =
Ak, p,(g) as long as A1d? = Xod3. This is rather surprising if we compare
this with the case of convex polygons: If D; (§ = 1,2) are convex poly-
gons and ¢ is a Neumnann data with index 0, then Ay, p,{(g) = Az, ,p,(9)
implies Dy = D, and k; = ks. This fact can be proved by the exactly
same argument as in the proof of [14, 2.6 Theorem].

Proof of Corollary 8.2. Let D be aball in R* (n =2,3) and g bea
nonzero Neumann data on 8¢}. Let H be the corresponding harmonic
function, namely, H = —8q(g) + Da(Ax p(g)). If H is homogeneous
with respect to a point in 2, then H is harmonic in R". By Lemma 3.3,
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u® is harmonic in R” \ D. Therefore g = Vu® - ¥ must be continuous at
every point of 92 where 8Q is C. This completes the proof. O

4. A remark on stability

In this section we give examples of simply connected domains for
which the stability fails. For simplicity, assume &y = kg = 2. We begin
with examples of domains for which the uniqueness fails. See also [1]

EXAMPLE 4.1. For a positive integer n, let

2% 1
Dy = By(0)\Bi0), D= B,,(0) with 12 = 22 = 1)

g—2-2n "
Here B,(a) is the disk centered at e with radius r. Suppose that D;
and Do are contained in 2 = Bs(0). (5 is of no significance.) Let the
Neumann data be given by

g(8) =cosnd on ON.

We claim that
Ap, (9) = Ap, (9)

In fact, let
2" ifo< |zl <1
3 11 .
VI(Z) — Zszr;z_” . 1f1£|z|<2
9_82 - 32 8_1;% if 2 < |2| < 5,
9-27% z" if |z| <
T ™
VY?(Z) = _12—211, 2n __
9-2 n a2 11 .
P -3 5 if r, <|z|] < 5.
Then Vf := Vjig\p, and V;-i := V;|p, satisfy
(4.1) 3VF+VE=4V} ondD; (j=1,2).

Thus u; = iERVJ, (the real part of V) with a, = §{5" (9 — 272") —

5=7=13(22" — 1)] satisfies the transmission condition %i = 2%:1 and
uf = u} on HD; (see [2]) and hence satisfies
Of course,

Gur  Bus

E—Ezg on BQ
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For a general simply connected domain €2, we let G be the conformal
mapping from Bs(0) onto 2. Then it is easy to see that Dy = G(D4)
and Dy = G(D3) can produce the same Cauchy data on 9€2.

REMARK. In Example 4.1, even the size of two domains 7 and D,
are different even though Ap, (g} = Ap,(g).

ExAMPLE 4.2. By perturbing D; in Example 4.1, one can see that
the stability fails even within the class of simply connected domains.
For € > 0 let

Ci={re®|1<r <2 e< |0 <7}
Then Df is simply connected for each €. Let u§ be the weak solution to
. . du
V- (1+x(D])Vu)=0 inQ and 3, =9 on 9.

Then, one can see that

fn (1+ X(DY)|V (s — ur)

- / (x(DS) — x(D1))|Vaus Pz + / (x(D1) — x(D$)) Vur Vs .
] 2

Since D5 C Dy, it follows that

IA

1/2
42 [ Vi -uPde < OVElTulim) ( / |wis2dx)

< CVe||Vurllzeo oy llgll 2 @)
Let
[(uf —ui}(zo)] = _max |(uf — u1)(z)|-
Bs(0)\B1(0)

Since Ei(—u;;ﬂ = 0 on 99, by Hopf lemma, x¢ € 8B4(0). By the mean

value property and (4.2), we have

[(u§ — w)(zo)| € CVe.

In particular, we have
Ap,(s) = Apy(9) = mAps(9) i L®(39).

However, the Hausdorff distance between Dy and Dj is larger than 1 for
all e. This gives the desired instability.
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