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PERMUTATIONS WITH PARTIALLY
FORBIDDEN POSITIONS

Suk-GEUN HWANG

ABSTRACT. In this paper we consider the enumeration problem of
permutations with partially forbidden positions, generalizing the
notion of permutations with forbidden positions. As an alternative
approach to this problem, we investigate the permanent maximiza-
tion problem over some classes of (0, 1)-matrices which have a given
number of 1’s some of which lie in prescribed positions.

1. Introduction

The problem of enumerating ‘permutations with forbidden positions’
retains substantial importance in the theory of combinatorics. A typical
example is the well-known derangement problem. A derangement of
{1,2,--- ,n} is a permutation ¢ of {1,2,--- ,n} with the property that
o(i) # ¢ for all i = 1,2,--- ,n. The problem is to find the number
of derangements. This kind of problem can be converted into one of
the evaluation of the permanent of certain (0, 1)-matrix with 0’s in the
‘forbidden’ positions and 1’s elsewhere. For a matrix A = [a4;], the
permanent of A, perA, is defined by

perA = Z @10(1)220(2) " * " Uno(n):

gESy
where S, stands for the symmetric group on {1,2,--- ,n}. The number
d, of derangements of {1,2,--- ,n}, the n-th derangement number, is

equal to the permanent of J, — I,, where J, and I, denote the all 1’s
matrix of order n and the identity matrix of order n respectively. It is
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well known that

n .

—1)

dn=n!_s_ (2')
=0

The derangement problem can be generalized to a problem of enumerat-
ing permutations o of {1,2,--- ,n} satisfying (i) # i for at least k of the
i’sin {1,2,--- ,n}, where & is an integer such that 1 < k < n. The cor-
responding permutation matrices are ‘partially’ forbidden to have their
1’s in the main diagonal in the sense that they are allowed to have upto
n -k 1’s in the main diagonal. It is easy to see that the number we are
looking for in this problem is equal to

5 (e

i=(

In this paper, we consider a problem of enumerating the permutations
with partially forbidden positions for some other settings of interest.

- Let n be a positive integer and S = [s;;] be a (0, 1)-matrix of order n.
Let d be an integer such that 0 < d < n2—#(S), where and in the sequel
for a (0,1)-matrix A, #(A) denotes the number of 1’s in 4. Let R(S,d)
denote the class of all (0, 1)-matrices A of order n such that A > S and
#(A~S) = d, where and in the sequel, A > S (resp. A < S) means that
every entry of A is bigger (resp. less) than or equal to the corresponding
entry of S. If d = 0, then R(S, d) consists of the matrix S only, and the
number of permutations ¢ of {1,2,--- ,n} such that o(¢) # j whenever
si; = 0 equals perS as in the case of derangement problem. We are
interested in the following problem:

{i) What is the maximum value of the permanent function over the
class R(S,d)?
(ii) At which matrices in R(S,d) is this value achieved?

This problem for § = O was investigated by Brualdi, Goldwasser and
Michael[l]. Specifically they determined an upper bound for the per-
manent of a matrix in R(O,d) for a given d, and they determined all
matrices in R(0O,d) with maximum permanent for d with n < d < 2n
and for d with n? — 2n < d < n?.

An n x n (0,1) matrix A = [a;;] with row sum vector (ry,72, -+ ,7p) is
called a Ferrers’ matrix if riy <ry <. <rpandap > ap > -+ 2 ain
for every i = 1,2,--- ,n, and is denoted by F(ri,7r2, -+ ,7s). It is well
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known that, if r; > diforalli=1,2,--- ,n, then

ki3
(1) perF(ri,ra, - ,1p) = H(rz —-i+1)

i=1
[3]. For integers n, k with 0 < k < n—1, let F(n,k) = [f;;] be the n X n
(0,1) matrix defined by f;; = 1 if and only if j < i + k. For example
F(n,1) = A, where

10 0 0
11 00
Qp=|1 1 i
11 ... 10
11 - 1 1]

is the nxn lower triangular (0, 1)-matrix with (n?4+n)/2 1’s in and under
the main diagonal positions, and F(n,2) is the n x n lower Hessenberg
matrix

1 1 0 0 0 0 07
1110 0 00
i1 11 0 0 0
ao|trrr o
1111 .- 110
1111 -- 111
1111 ---"1 1 1]

Let d be an integer such that 0 < d < n? —#(F(n,k)). In this paper, we
maximize the permanent over R(F(n,k),d) for the case that n is suffi-
ciently large compared with d, and for the case that d < 2. The problem
concerning the maximization and minimization of spectral radii of ma-
trices in the class R(A,,d) was investigated by Brualdi and Hwang [2].
By (1), it follows that

(2) perF(n, k) = k" %kt

2. Maximum permanent over R({F(n,k),d)

For a matrix A of order n and for o, 8 C {1,2,--- ,n}, let A(a|f)
denote the matrix obtained from A by deleting all rows in « and all
columns in 3, and let A[a|3] = A(@]B3), where @ and B stand for the
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complements of o and 8 relative to {1,2,--- ,n} respectively. The fol-
lowing lemma is well known. The proof we give here is a little bit simpler
than that in [4, p.19]. For integers r, n with 0 <r < n, let @, denote
the set of all r-subsets of {1,2,--- ,n}.

LEMMA 1 ([4, p.18]). If A, B are matrices of order n, then

(3) per(A+B)=)_ )  perAla|flperBiald).

=0 o,36Qrn

Proof. Let A = [ay;], B = [by], and

(4) flzy=per(Az + B) = oz’
r=0

In the expansion of
3 (B100)Z + b1o(1) ) (@20(2)% + b20(2)) *** (@no(m) T + bro(my);
O'GS'n.
the coefficient ¢, of z, clearly equals
> perAfn|glper B4,
a,ﬁEQr,n
and formular (3) follows by plugging z = 1 into (4). a

Let L denote the back diagonal permutation matrix

c o0 - 001
600 .- 010
000 -- 100
gl: - Lo
0 01 000
o190 - 000
(100 - 00 0]
of order k, and for an integer d with 0 < d < (n — k)/2. Let I'y denote

the n X n matrix
O Ly
[ O O}
We make a rough guess that the maximum value of the permanent over
the class R(F(n,k),d) is achieved at a matrix with the ‘additional’ d 1's
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being placed close to the back diagonal. From now on in the sequel, let
E;; denote the square matrix of suitable order all of whose entries are 0
except for the (7, j)-entry which is 1.

LEMMA 2. Let X = [zy] be an n x n Ferrers matrix with A, < X
whose row sum vector and column sum vector are (ry,ry, -+ ,7y) and
{e1,¢2,- -+ ,cn) respectively, and let p, ¢ be integers with 1 <p < g<n
such that zpq = 0. Let A= X + Eg+ Epp, B = X + Eyy + Epy. Then
perA < perB where the inequality is strict unless ry = rp = -+ =1,
and cg = cgqy1 =+ = Cp.

Proof. By Lemma 1, we have

perA = perX + perX(llg) + perX(p|n) + perX(1,plg, n),
perB = perX + perX(1|n) + perX (plg) + perX (1, plg, n).
Let Y:Xl-p-*_la ?(I|p1 :q_]‘] and let
a=ralrg—1)---(r, —p+2),
o =rifrg—=1) - (rp_1—p+2),
b=cn-1(ca—2 — 1)+ (cg — (n— g ~1)),
¥ = calen-1-1)-(cg+1 — (R —g—1)).

Then a > o/ with equality if and only if ri = 7o = =rp, and b > ¥/
with equality if and only if ¢; = ¢441 = -+ = ¢,. Now by the formula
(1),

perX (1|n)

=perX[2,---,n|l,-- ,n—1]
= ryperX[3,--- ,n|2,--- ,n— 1]
= ro(r3 — )perX[4,--- ,n|3, - ,n_l]

=ra(rg ~1)---(rp—p+2)perX[p+1,--- ,njp, - ,n—1]
=aperXjp+1,--- ,n|p,--- ,n—1].
On the other hand,
=perX[p+1,--- ,n|p,--- ,n—1]
= cpiperX[p+1,--- ,n—1p,--- ,n— 2]
= cp—1{Cn—2 — )perX[p+1,--- ,n—2lp,--- ,n—3]
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= cp1{en—2 — 1)+ - (cg — (R — g — 1))
xperX[p+1,--- ,qlp,- - ,q—1]
= b perY.

Thus perX(1jn) = ab perY. Similarly we can show that perX(l|g) =
ab/ perY, perX(p|n) = a'b perY and perX (p|¢) = a'd’ perY. Hence

perB — perA = (ab+ o't — ab/ — o'b}perY
= (a —a')(b— b)perY

> 0,
where equality holds if and only if either @ = o’ or b = ¥'. Thus the
inequality is strict unless v} = rg = -+- = rpand ¢g = ¢g41 = -+ =
Cn. O

Let Max(S,d) denote the set of all matrices A € R(S,d) such that
perA > perX for all X € R(S,d).

THEOREM 3. Let ¢, d and n be positive integers such that n >
¢+ 2d. If d equals 1 or 2, then F(n,c) + Iy is the unique matrix in
Max(F(n,c},d).

Proof. Let G = F(n,c). By Lemma 2, it is straightforward that
Max(F(n,c),1) consists of the single matrix G + I1. To prove the
theorem for the case d = 2, let A € Max(F(n,c),2) and let A; =
G + E1n + Ez2n, Ay = G+ I';. Then by Lemma 2 again and by taking
flip along the back diagonal, if necessary, we may assume that A = A
or A= A;. By Lemnmal,

perA; = perG + perG(1|n) + perG(2|n),

perds = perG + perG(1|n) + perG(2|n — 1) + perG(1,2|n — 1,n)
so that

perds — perA; = perG(2|n — 1) + perG(1,2|n — 1,n) — perG(2|n).

Since
(L n—ZhC)T 1 0

Glln—D=1 pn_9c4+2)|he |

G(1,2ln—1,n)=F(n—2,c+2)
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and

(Lné2hc)T l 0

G2In) = Fin—2,¢+2) {heyr |

where h;, stands for the sum of the last & columns of the identity matrix
of order n — 2 for k = ¢,c + 1, we get, by formula (2), that

perG(2ln — 1) = perF(n — 3,c+1) = E(c + 1) 4 c + 1),
perG(1,2|n — 1,n) = (c 4 2)" " Hc+2)! = (¢ +2)" (e + 1),
perG(2|n) = c perF(n — 2,c+1) = ¢(c + )" 3+ 1), ‘
whence
perds — perd;

= (c+ WA (c+ 1) L (e +2)"3 — (e 4+ 1)"7¢7

> (c+ Dlc+ 1) + (¢ +2) — c(c+ 1)]

=2(c+ DNc+ "1 > 0.

Thus it follows that A; is the matrix at which the permanent function
attains at its maximum, and the proof is complete. ‘ |

LEMMA 4. Let ¢ and d be fixed positive integers, and let A € Max
(F{n,c), d). If n is sufficiently large, then the d X d submatrix A[l,
-++,dln—d+1,---, n] in the upper right corner of A Is a permutation
matrix.

Proof. Let G = F(n,c) and U = A — G. Let p be the largest integer
less than or equal to n such that the row p of U is not a zero vector,
and let ¢ be the smallest integer less than or equal to n such that the
column ¢ of U is not a zero vector. Let Up = U{L,--- ,plg,--- ,n]. Then
by Lemma2, the matrix I’y can not have a zero row or zero column.
Note that Uy is a permutation matrix if and only if p =n—¢+1 =
d. We may assume that p < n — ¢ + 1 by taking flip along the back
diagonal if necessary. Suppose that Uy is not a permutation matrix.
Then p < d. There is no k x k permutation submatrix of U if & > p.
Let k be an integer such that 1 < k < p. Let ay = {1,--- ,k}, Gx =
{n—k+1,---,n}. Then for every k-subset « of {1,--- ,p} and every
k-subset 3 of {n — ¢+ 1,--- ,n}, perG(al3) < perG(ay|Bx) because



800 Suk-Geun Hwang

G(al3) < G{ap|Br). Since G(aw|Br) = F(n — k,k + ¢}, we have, by
formula (2), that
(k+¢)!

perG(alf) < (k+ 0"k + Ol = o

(k+c)"

Since the number of k x k permutation submatrices of U does not exceed
(g), and since perG = ¢ “c!, we have from Lemma 1 that

P

k+c)! n n
perd < Z (k(+ bk on < Y (ko™
k=0

On the other hand, lettmg ap={1,---,d}, fo={n—-d+1, - ,n}, we
have
per(G + I'y) = perG(ao|fo) perla(eolfo)
= perG(ao|fo)
={d+ )" (d+ o)l = %(d + ¢)?,
since G(ap|fy) = F(n —d,d + ¢). Thus

perA <d!(d+c)2d+° 2 (k—i—c)"
per(G+1Iy) = (d+o)! \d+e

I 2d+c LG

_d.(d+c) ( +1)(p+c)
{d+c)! d+e¢

Since p < d, the above inequality tells us that per4 < per(G + I'y) for

every sufficiently large n, which is impossible since G + Iy € R(G,d)

and A € Max(G,d). Therefore it has to be that Up is a permutation

matrix. O

THEOREM 5. Let ¢ and d be fixed positive integers. If n is sufficiently
large, then the maximum permanent over R(F(n,c),d) is achieved
uniquely at the matrix F(n,c) + Iy.

Proof. We prove the theorem by induction on d. The case d < 2 is
treated in Theorem 3, and the induction starts. As in Lemma 4, let
G = F(n,c), A € Max(G,d), and U = A — G = [us;]. Then by Lemma
4, U[1,--- ,dln—d+1--- ,n] is a permutation matrix of order d. Note
that any square submatrix of I/ is a permutation matrix unless it has a
zero row or zero column. We call a subset 6 = {(¢1,71),- -, (ék, Jx)} of
{1,2,-- ,n}x{1,2,--- ,n} ak-diagonal of U f U = [iy, -~ , ix |71, -,
Jk| 18 a permutation matrix of order k. For a k-diagonal § = {(¢1, 1),
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ey (ik,jk)} of U, let G(é) = G(iy, -, ’ikljl, ey jk) Let A(k,U)
denote the set of all k-diagonals of U. By Lemma 1, we see that

d
perA = perG + Z Z perG(8).
k=18eA(k,U)

We first show that u;, = 1. Suppose, on the contrary, that u;, = 0.
Then there exist integers p, g with 1l <p<dandn-d+1<g<n
such that ui; = up, = 1. Then, clearly, upy = w1, = 0. Let B =
A~ Eyy+ Ein+ Epg — Epp, and V = B—G. Then B € R(G,d),
vV =U—E1q+E1n+qu—Epn, and

d
perB = perG + Z Z perG(4).
k=138cA(k,V)

A & € A(k,U) belongs to exactly one of the following four cases ;
case (i) : (1,q) ¢ & and (p,n) ¢ 6,
case (i) : (1,q) € & and (p,n) ¢ 6,
case (iii) : (1,q) ¢ 0 and (p,n) € 4§,
case (iv) : (1,q) € § and (p,n} € 4.

Let 8 = & — {(1,9),(p,n)}, and let & = & if § belongs to case (i},
= o U {(1,n)} if & belongs to case (ii), = y U {(p,q)} if & belongs to
case (iii), = & U {(1,n), (p, q)} if & belongs to case (iv). Then

d
perB — perA = Z Z (perG(&') — perG(8)).
k=16€A(k,U)

If 6 belongs to case (i) or (iv), then perG(§’') — perG(8) = 0. So, by
letting A*(k — 1, U) denote the set of all (k — 1)-diagonals which do not
contain one of (1,q), (p,n), we have

d
Y. D (aG() —paG(s)

k=18cA(k,U)

d
= Z Z (perG(d1,n) + perG(dp,q) — perG(d1,4) — perG(dpn)),
k=18cA*(k—1,U/)
where 65 = & U {(4, )}, for (i,5) € {(1,n), (p,@), (1,4), (,m)}. But
(perG(é1,n) + perG(dpq) — perG(61,4) — perG(dpn))
= per(G(do) + Ein + Epg) — per{G(do) + Erg + Epn),
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which is positive by Lemma 2 because G(ég) is a Ferrers matrix, con-
tradicting the maximality of A. Thus it is proved that u;, = 1. Now
expanding perA along the first row, we have

perA = ¢ per(F(n —2,¢) + U(1|n)) + per(F(n — 1,c+ 1) + U(1,n)).
By induction,
per(F(n — 2,¢) + U(1jn)) < per(F(n —2,c) + I'q_1)
per(F(n—1,e+ 1)+ U(1n)) < per(F(n —1,c+ 1) + I4_1),
where any of the equalities holds if and only if U(1|n) = I'4_;. Thus
perA < ¢ per(F(n —2,¢) + Ty_1)} + per(F{n — 1,c + 1) + Iy_1)
= per(F{n,c) + Iy),

with equality if and only if U(1|n) = I[4—;. Since A € Max(G,d), it
must be that U(1{n) = I'3_; and hence that U(1|n) = Iy, and the proof
is complete. a

3. Matrices in Max(A,, d)

If ¢ = 1, then F(n,c¢) = A,. The permanent maximization problem
over the class R(A,,d) can be interpreted in terms of graph theoretic
terminologies as follows. Let D, be the directed graph with n nodes
1,2,---,n and (n? + 2)/2 arcs (i,5), for all 4, j with i > j. Then A,
is the adjacency matrix of D,. To D,, we would like to introduce some
new arcs (%,7) with i < j. We call such an arc (7, j) a down-going arc.
A spanning subgraph H of a directed graph D is called a 1-factor of D
if the in-degree and the out-degree in H of each vertex equal 1. It is
well known that the number of 1-factors of a directed graph D is equal
to the permanent of the adjacency matrix of D. The problem here is
to determine the set of d down-going arcs to be added to I, in order
to maximize the number of 1-factors of the resulting directed graph.
We conjecture that the maximum permanent over R{A,,d) is achieved
at the matrix A, + Iy if d < n/2. In what follows we evaluate the
permanent of A, + I'y in terms of some numbers defined by a recurrence
relation similar to that of binomial coefficients, and show that every
matrix in Max(A,,, d) is fully indecomposable.

Let p be a fixed nonnegative integer. For nonnegative integers n, &,
let (2)‘,p be a number defined by
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@ G),=1),=1fralln=1.2,-,

4

(i) (3), = o), +A7 (")), =1fork<n—1,

(iii) (7),=0if k> n.

Note that (3;), = (7) and (§); = S(n, k), the Stirling number of the
second kind. In the next theorem we give a formula for the permanent
of the matrix A,, + I'; in terms of the numbers (:') .

THEOREM 6. Let d, n be integers such that 0 < 2d < n.

(a) If2d < m — 1, then per(A, + I}y) -—; il (dtl)zkn‘zd(k - 1)L
(b) If 2d = n, then per(A, + I'y) = Yy (P, (k + 1)L,

Proof. For nonnegative integers n, k, r with k+r < n, let f.(n, k) =
per{ F(n,k) + I'.). We first prove the recurrence relation

(5) frln k) = k2 friiin = 2,k) + froa(n — 1,k + 1)

for f.(n,k). Let A = F(n,k) + I.. Then perA = per(A — E1,) +
perA(1|n). Clearly per(A—FE),) = k?per(F(n—2,k)+I_1) = k2 fr_1{n—
2,k). Since A(l|n) = F(n — 1,k + 1) + I+_1, we have perA(l|n) =
fr—1(n—1,k+1). Thus (5) follows. We see that per(A,+Iy) = fa(n,1).
We now show, for each integer » with 0 < r € min{d, (n — 1)/2}, that

r+1
(6) fatn) =32 ("5 Sorrln =20 4 = 1,8)
k=1 2

Clearly the equality (6) holds for » = 0. Suppose that (6) holds for r — 1.
Then by induction and by the recurrence relation (5), we get

ZEDY (;)Qfd_m(n o+ k41k)
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T

-5 (;)2[k2fd_r(n —2r+k-1k)

k=1
+ far(n—2r + k, k+1)]

r

(:) 2fa}_.,,-(n 2r, 1) + k2 Z (;) fa—r(n—=2r+k—1k)

k=2 2

r—1
+¥ (;) Farln—2r + b k+ 1) + (T) famrln—7,7+1)
k=1 2 T 2

= (’1")2fd_r(n ~2r,1)

+§2 (kz(;)2+ (k i 1)2) fierln —2r + k—1,k)

+ (T) far(n—mr+1)
/2

= fd—r(n - 2’!‘,1)
T fr+l
+k2=2( k )zfd—r(ﬂ—2'f‘+k:ﬁ1,k)+fd,,,.(n_r,r+1)
r+1
= Z(T—’:l) fa—r(n—2r+k—1,k),
k=1 2

completing the proof of (6). In case that 2d < n—1, plugging r = d into
(6), we get

d+1
fan,1)=3" (d: 1)2f0(n-—2d+k— 1,k)

) k24 (g — 1)

with the aid of formula (2). If 2d = n, then plugging r = d — 1 into (6),
we get



