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MULTIPLICITY RESULTS FOR PERIODIC SOLUTIONS
OF SEMILINEAR DISSIPATIVE HYPERBOLIC
EQUATIONS WITH COERCIVE NONLINEAR TERM

WanN SE KM

ABSTRACT. Multiplicity for doubly-periodic solutions and Dirichlet-
periodic solutions are treated.

1. Doubly-periodic problem in one space dimension

In this chapter we will discuss the multiplicity result for weak doubly-
periodic problem for dissipative hyperbolic equations with coercive growth
nonlinearity in one dimensional space.

1.1. Introduction

Let Z, Rt and R be the set of all integers, non-negative real numbers
and real numbers, respectively and let ) = [0, 2#] x [0, 2x].

Let L*(Q) be the space of measurable real-valued functions u : 2 — R
which are Lebesgue integrable over € with usual norm ||-||z:. Let L2()
be the space of measurable real-valued functions % : @ — R which are
Lebesgue square integrable over ! with usual inner product (,) and
usual norm ||-||z2 and let L°°(£2) be the space of measurable real-valued
functions u : & —» R which are essentially bounded with usual essential
norm |} - || goe.

Let C*(Q) be the space of all continuous functions u : @ — R such
that the partial derivatives up to order & with respect to both variables
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are continuous on £, while C(£2) is used for C%(Q2) with the usual norm
[| - oo and we write C=(02) = Mo, C* (D).

Let W*2(Q) be the Sobolev space of all functions » : 2 — Rin L2()
such that all partial distributional derivatives up to k belongs to L*(Q)
with the usual Sobolev norm.

The purpose of this work is to investigate the multiplicity results for
weak double-periodic solutions of the semilinear telegraph equations of
the form

(1.1.1) Bus + Ugy — gy +9(t,z,u) = h(t,z) in Q

where 8(# 0) € R, u = u(t,z), h € L?(Q) and g: xR — Risa
continuous function.

A weak doubly-periodic solution of (1.1.1) will be u € L?(Q) such
that

(1.1.2) (1, —fvr + v — Var) + (g(-, -, u), v) = (h, v}

for every v € C?(Q) satisfying the boundary conditions
v(t,0) — v(t, 27} = v, (¢,0) — v, (¢, 27}, t € {0, 27)
v(0,z) — v(2m, z) = v, (0,z) — v, (2m, z),t € [0, 27].

Let us remark that a necessary condition for (1.1.2) to have meaning is
that g be such that g(-,-,u) € L*(?) when « € L*(Q).
Besides, g is a continuous function on 2 x £, we assume the following.
(Hy.1) There exist a € L°°(§2) and b € L2(Q) such that

lg(t, z,u)| < a(t,z)|u| +b{t,z) ae on €

The existence results for telegraph equations with sublinear growth
nonlinearity are treated in [9, 17, 21, 24| and the existence result for
superlinear case is treated in [15]. For more information for this equa-
tion, we can refer [27]. Our results are somewhat related to that of
Ambrosetti-Prodi [1] who initiated so called Ambrosetti-Prodi type mul-
tiplicity in 1972 in the study of Dirichlet problem to elliptic equations
and it has been developed in various directions by several authors to or-
dinary and partial differential equations [5, 6, 7, 12, 13, 14, 17, 19, 20]. In
this note, we give new conditions on forcing term for the multiplicity of
doubly-periodic solutions for telegraph equations having coercive growth
nonlinearity. Our method of proof is based on continuation theorem to
coincidence topological degree [10, 20]. We use the specific properties of
the periodic problem for (1.1.1} in obtainment of the required a’priori
bound.
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1.2. Preliminary results

Now consider the equation

(1.2.1) Pus + Uy — gy = h(t,z),3 #0 and write
u(t,z) = Z U, €Xp[E(lt + mx)]
(LLm)EZXZ
h(t,z) = Z Ry, exp[i{lt + mz)]
(lLm)eZxZ

with @, = t—j—m and hyn = h_j_,, since u and h are real.

LEMMA 1.2.1. u € L3(f) is a weak solution of (1.2.1) if and only if,
for all (I,m) € Z x Z,

(Bl + (m® — B)|wm = him.
Let
DomlL = {u € L2 () Z [32% + (m® — ) fum|® < oo} .

{I,m)eZxZ

Define an operator L : DomL C L?(Q) — L(Q) by

Lu)t,zy= > [Bli+ (m® — ®)wm expli(it + ma)].
{LmYEZxZ

Then DomL is dense in L?(2), KerL = R

ImL ={he L2(Q)|f/ h(t,z) dt dz = 0},

ImLZ is closed, and
[KerL]t = ImL.

Moreover, L2(Q) = KerL € ImL. Consider a continuous projection

P:L%(Q) — L*(Q) such that ImL = KerP.
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Then L?(Q) = KerL @ KerP. We consider another continuous projec-
tion @ : L2(f2) — L?(£2) defined by

(@)(t.9) = 35 [ [ hit,z)de s

Then we have L?(Q) = ImQ P ImL, Ker@ = ImL, and L?(02)/ImL is
isomorphic to Im@. .

Since dim[L?(R2}/ImL] = dim[Im@)] = dim[KerL] = 1, we have an
isomorphism J : Im@ — KerL and L is a Fredholm mapping of index 0.
Moreover, we have easily the following lemma.

LEMMA 1.2.2. L:DomL C L?(Q2) — L*(Q) is a closed operator.

If h € L?(Q), then u is a weak solution of (1.2.1) if and only if
u € DomL, Lv = h. L is not bijective but the restriction

Llpomrrimz : ImL N DomL — ImL
is bijective, so we can define a right inverse
K® = [L|pomzrime) ™! : ImL — ImL N DomL
and

(KER)(t,zy = D [Bli+(m® ~ %) hum expli(it + ma)].
(Lm)EZxZ
(Lm)#(0,0)

We have the following lemma.

LEMMA 1.2.3. DomL NImL = KE&[ImL] € W'3(Q) N C(Q) NImL
and
KEWH 2 nImL) C W2 NImL, k=0,1,2,3,... .

Moreover, if h € ImL, then ||K®h| 1.2 < C||h||z2 for some Cy; > O
independent of h.
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Proof. See [15, 18, 24]. Since

(KRR)(t,z) = Z [8li + (m® — 1*)] " hum exp[i(lt + mz)],
(Lm)EZxZ
{I,m)#(0,0)

we can represent K as a convolution product

(KER)(t,z) = (K * h)(t,z) = [/ﬂ K(t — s,z — y)h(s,z)dsdy

where K (t,2) : 22z > umyezxz [0l + (m? — 1)) expli(lt + mz)]. O
(tm)#(0,0)

We have the following lemma.

LEMMA 1.2.4. The operator K% : ImL — C(S2) is compact. If h €
ImL, then ||K®h|x < Ca||h||z2 for some constant Cy > 0 independent
of h.

_ Proof. See [15, 18]. Now we can extend K® to L'(2) by defining
K® . LYQ) — L*Q) by the formula

(RPR)(t,z) = / /ﬂ K(t— 5,5 —y)h(s,y)dsdy for he L'(Q). O

Then, by Holder’s inequality and Fubini’s theorem, we have the fol-
lowing lemma.

LEMMA 1.2.5. |[K®h| 2 < ||K||pz|hliL:-
Proof. See [15]. O

1.3. Multiplicity results

To treat our problem, let us consider the following doubly-periodic
boundary value problem for a family of homotopy equation

(1.3.1»)
Bus + Uy — uzz + Ag(t, z,u) = AR(t,z), Ae|0,1],



858 Wan Se Kim

where ¢ : 2 x R — R is a continuous function and h € ImL. Let L :
DomL C L*(f2) — L%() be defined as before and define a substitution
operator Ny : L#(2) — L%(Q)

(N)\)(t? I) = Ag(ta Z, u) - ’\h(ta 33)

for u € L3() and (t,z) € Q. By Krasnosel’skii’s results, N, is contin-
uous and bounded. Let G be any open bounded subset of L2(2), then
QN : G — L*(9) is bounded and K%(I — Q) : G — L*(Q) is compact
and continuous. Thus, Ny is L-compact on G. The coincidence degree
Dy (L + Ny,G) is well-defined and constant in A if Lu + Nyu # 0 for
A €[0,1] and v € DomL N 8G. It is easy to check that (u, ) is a weak
doubly-periodic solution of (1.3.1,) if and only if v € DomZL and

(1.3.2) Lu+ Nyu=0.
Here we assume the following;

(Hyo) g(t,z,u}) >0 on QxR

(Hy.3) lim g(t,z,u) = +o0 uniformly on £

[u]—+e0

LEMMA 1.3.1. If (H,») and (H,3) are satisfied, then there exists
M > 0 such that
|Gl < M

holds for each possible weak doubly-periodic solution u = @ + i, with
@ € KerL and i € ImL, of (1.3.1,) where A € [0,1].

Proof. Let (u,)) be any weak doubly-periodic solution of (1.3.1,).
Then (u, A) is a solution of (1.3.2)) where v = @+ with 4 € KerL and
i € ImL. By applying K% on the both sides of equation (1.3.2)), we
have, since _

= AR Nyu = MK =g () + B, ).
Hence, by Lemma 1.2.5,

fallze < 1Kl r2lllgl, Wl + 1Al
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By taking the inner product with 1 on the both sides of (1.3.2)), since
1 ¢ KerL, we have

[/ﬂ g(t, z,ult, z))dtdz =/./s.) h(t, T)dtdz.

Hence, by (H, 2), we have ||g(-, -, u)||z2 < ||h||z:. Therefore, we have
l@lle < 2)K|[z2]hllr = M

The proof is complete. a

LemmMmA 1.3.2. If (Hy1), (H1.2), and (H, 3) are satisfied, then there
exists vy such that
|ie] <

holds for each possible weak doubly-periodic solution w = 4 + 4, with
€ KerL and @ € ImL, of (1.3.15) where A € [0,1].

Proof. Suppose there exist a sequence of weak doubly-periodic solu-
tions {(un, An)} of (1.3.15,) with {}@,|} is unbounded. Then (un,\,)
is a solution of (1.3.2,, ) where w, = #, + @, with @, € KerL and
%, € ImL. We may choose a subsequence, say again {%,} such that
[ti,| — +oc as n — +o00. Now suppose that %,, — +00c as n — +oc. Let
My > 2nrM where M is given in Lemma 1.3.1 and let

s%:ﬂmm%mmg_%%}

Then
%szf%@@mw
// |ten (t, z)|dtdz
> o0,
Therefore, |[2,]] < 41r2%4— and hence {[Q — Q]| = [{(t, 2)|un(t,z) >

—28}| > 4n?[1 - Z2) > (.
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Since lim|y|— 40 (¢, 2, 1) = +oc uniformly on €2, there exists C' > 0
such that

1
gtz u) > m -/S;h(t,.’ﬁ)dtd:c

for all n if [u| > C.
Since i, — +00, there exists N > 0 such that

ﬁn2£;+0 if n>N.
47

Hence, for (¢,z) € & — ), and n > N, we have
un(t,x) = 4y + 0a(t,z) > C.

Thus, for n > N, we have

// o Q(t,m,un(t,x))dtd:f:>//ﬂ h(t, z)dtdz.

TTRan

On the other hand, by taking the inner product with 1 on the both
sides of (1.3.1,,, ), we have

/:/g; 9(t, z, un(t,z))dtdz < /1; h(t, z)dtdz.

Therefore, for n > N, by (Hi.2),

/ /ﬂ h(t, z)dtdz = / /Q olbs 10, (1, 2))dtd
2/./9_9“ g(t, 2, up (t, z))dtdz

> // h(t, x)dtdz
Q
which 1s impossible.

Similarly, we can treat the case where &, — —oo. The proof is com-
plete. ]
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THEOREM 1.3.1. Assume (Hy,), (H12), then the doubly-periodic
boundary value problem on §2 for the equation (1.1.1) has at least two
weak solutions if there exists a constant ro € R such that

(1.3.3)
_//Q g(t,z,ro + d(t, z))dtdz < f/ﬂ h(t, z)dtdz

for every @t € L%({)) having mean value zero on §2, satisfying the doubly-
periodic conditions and such that

(1.3.4) il 2 < 2[K || z2flAliL:-

Proof. To prove our multiplicity result, we construct two disjoint
bounded open sets G; and G on which the coincidence degree is well-
defined and non-zero, respectively.

Since limy| oo 9(t, 2, u) = 0o uniformly on €2, there exists § > 0 such

that
g(t,z,u) > f/ h{t, z)dtdz
o)

for all |u| > 6 and uniformly on €.
Let B B
Gr={ueL?(Q)ro <@ <74+ M,|i| < M}

where u = @ + @ with @ € KerL, @ € ImL and M, and 7 are constant
such that M > M,7 > max {r,5}.

If u € 8G,, then necessary & = rp or & = 7 + M and if (u, \) satisfies
the equation (1.3.2,), then (u, A} satisfies

(1.3.5) / /ﬂ a(t,z, ult, z))dtds = f fﬂ ht, z)dtdz.

If @ = rp, then, from (1.3.3), we have a contradiction. If @ = 7 + M,
then u =F+ M + . let

Qo = {(t, x)||alt,z)| > M}.
Then

il > f f li(t, =) |dtda

/[ [G@(t, x)ldtdx

> |[Q0]| M.
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Therefore |[Q2]] < 27 and hence |[Q - Qo] = |[{{t, z)||G(t, z)| < M}]| >
1. Thus we have |u| > & on Q2 — )y and hence

f fQ g(t, T, u(t, x))dtdx > f fn o gt z,u(t, z))dtde
> |[2 — Q| / /ﬂ h(t, z)dtdx

>/:/Q h(t, z)dtdx

which leads another contradiction. Therefore the coincidence degree
Di(L — N,Gy) is well defined on 2.

Now, since, for u € KerL N 0G1, we have u = rg or u = 7 + M, we
conclude

(QN)(ro) = Ws}iﬂ f fﬂ Ih(t, 5) — g(t,, mo)]dtdm > 0,

_ 1 _
@)+ 1) = f f (h(t, z) — g(t, z,7 + M)|dtdz < 0.
Q
Hence, the coincidence degree exists and the corresponding value
DL(L - N,Gl) = dB[JQN, KerL N Gl,O] =1

where dp is Brouwer degree. Therefore, the equation (1.3.21) has at
least one solution in DomL N CI(G}).

Similary, we can prove that the equation (1.3.21) has at least one
solution in DomZL N CI{(G,) where

Go={uec L2 - (F+M) <a<rgl|id|: < M}

Since, by (1.3.3), © = ry is not solution to (1.3.2;)} and CI(G1) N

Ci{G3) = {ro}, the doubly-periodic boundary value problem to the
equation (1.1.3) has at least two weak solutions. a

REMARK 1.3.1. If

1
— h{t,z)dtdz < inf t,r,u),
[ //n (t:2) (a,ze)gng( )
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then the doubly-periodic boundary value problem for the equation (1.1.3)
has no solution. Indeed, let

t ’ 2 = inf ta ) .
9(to, To, ug) o Qg( T,u)

ucR

Let E be any open bounded set in ImZL such that
E 2 {@ € ImL||il| 2 < M}

and let, for any § > 0, G = (ug — 8, up + &) P Q. Suppose u € G and
(u, A) satisfies the equation (1.3.2,), then (u,\) satisfies (1.3.5). But
=14+ % and

x)
€

// g(t,z,a + w)dtdx > |[Q]] inf gt z,u) > [[ h(t, z) dtdx
Q (#: 1629 Q

which contradicts to (1.3.5). Therefore the coincidence degree Dy (L —
N, G) is well-defined. But, for any u € KerL NG,

1
@¥)W) = / fﬂ [(A(t, z) ~ g(t,, w)]dtdz < 0

DL(L — N,G) = dg(JQN,KerL N G,0) = 0.

Therefore the double-periodic boundary value problem to the equation
(1.1.3) has no solution.

Next we consider multiplicity result for equation {(1.1.1) when the
nonlinear term g(t, z,«) depends only on u, i.e.

(136) Bug + gt — Uex + g(u) = h(t: :l:)

To treat our problem, let us consider the following doubly-periodic
boundary value problem for a family of homotopy equations

(1.3.7)
Bug + wy — Uge + Ag(w) = MA(t,z), A € [0.1]

where g : R — R is continuous and h € ImZL.

(Hi,) There exist a,b > 0 such that |g(u)| < afu| + b for all u € R.
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Let L : DomI C L*(2) — L?() be defined us before and define the
substitution operator by

(N2)(8,z) = Ag(ult, z)) — Ah(¢, z)

for u € L%(Q) and (t,z) € . Then N, is L-compact on G for any
open bounded subset G of L?(f2). Thus the coincidence degree D (L =
Ny, G) is well defined and constant in A if Lu+Nyu # 0 for A € [0, 1] and
u € DomZLNaG. It is easy to check that (u, A) is a weak doubly-periodic
solution to (1.3.7,) if and only if u € DomL and

(1.3.8) Lu+ Nyu=0.

Here we assume the following.
(Hi2) liIn]u|—>+oca g(u) = 400,
(H{ ;) there exists 0 < a < 1 such that

8
27T02

lg{u) — g(v)| < lu—wv| forall wu,veR,

where (5 is a constant defined in Lemma 1.2.4.

LEMMA 1.3.3. If (Hy.1) is satisfied, then there exists M > 0 such
that
i)l < M

holds for each possible weak solution v = % + 4, with u € KerL and
@ € ImL, of (1.3.7,) where X € [0.1].

Proof. Let (u,A) be any weak solution of (1.3.75) where u = 2 + 4
with @ € KerL and % € ImZ.
By taking the inner product with %, on the both sides of (1.3.7)), we

have
(La,d,) + )\/] glu)i,didz = )\f/ h(t, z)udtdz.
2 7

Since Lii € L2(f), there exists a sequence {#,} in C*(Q) N ImL such
that %, — Li in L?(2) as n — +o0.

Let %, = Kfj,. By Lemma 1.2.3 and the Sobolev embedding theo-
rem Wit22(Q) — (), (j =0,1,2,...), i, € C®() NImL. Since
K* is continuous from L?(€2) into each of W12(Q2) and C(f2), we have
that 4, — Kf(L#u) in each of those spaces as n — +oc.
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Thus i, — % in L*>({1). Integration of these smooth functions, using
the boundary conditions, show that for each n =1,2,3,...,

(Lt iin,) = Blin, ||22-

Letting n — 400, we have (L, @) = 3||ts]|3.. Moreover, since, for
each n, the periodicity of @, (¢, z) in t implies (g{un), @in,) = 0, we have

(g(u), i) = 0.
Hence, we have

Bliiellze = A(h, @)
and 1

~ 2 i

(7 S — |k L2

1G] z.2 ] il
But since ||@||f2 < ||t¢]|32 for all & € DomL N ImL, we have
1
|8

The proof is complete. ]

fallze < = [1Allz2-

THEOREM 1.3.2. Assume (H:.1), (H] ,), and (H{ 3). Then the doubly-
periodic boundary value problem on €} for the equation (1.3.6) has at
least two solutions if

(1.3.9) inf / /ﬂ o + (e, z))dtds < ﬁ f f hit, z)dtdr

for every @ € L?(S?) having mean value zero on §1, satisfying the doubly-
periodic conditions such that

lallzz < ||A]lz2-

Proof. Tt is easy to see that (1.3.7,} is equivalent to

(1.3.10) Li+(I-Qg(i+a)=h—-h

(1.3.11) Qola+u)=h
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where u = @ + @ with @ € KerL and 4 € ImL, h = gy, [f,, h(t, z)dtdz
and @ is the continuous projection defined in Section 1.2. For fixed u €
R, consider the equation (1.3.11). Define an operator N : L#(Q) — ImL
by
(N‘lt)(t, IE) = _(I - Q)g(ﬁ' + '&(t?x)) +h - h(t,:{:).

Then N is continuous and maps bounded sets into bounded sets. Since
the inclusion mapping i : C(2) — L%(f) is continuous, the right inverse
K® : ImL — L?*() is compact. Hence KN : L?(Q) — L%() is
completely continuous and (1.3.11) is equivalent to

i = KEN.
By Lemma 1.3.3, all possible solutions to the family of equations
a=AKENa, Xe[0,1]

are bounded in L?({2) independently of A € [0, 1].

Thus, by Leray-schauder’s theory, (1.3.11) has at least one solution @
for each @ € R. Such a solution is unique. Indeed, if 4, and s are two
different solutions with #, then

L(ay — ti2) + (I — Q)[g(@ + 1) — glu + @2)] = 0.

Applying K on the both sides of the above equation, we have, by
Lemma 1.2.4 and (H] 3),

81 — 2l < alltiy — B2l
which is impossible since 0 < @ < 1. Thus #%; = 9.
Denote this unique solution of (1.3.11) by V{(&), by Lemma 1.2.3,
then V : R — C(2) NImmL is a continuous function.
If 4,4y € R, then
Lv(a) - V{ao)] + (I — Q)g(uv + V(@) — g(@o + V (to)})] = 0.
By Lemma 1.2.4 and {H{ 3), we have

V(@) ~ V(ig)loo <

1_a|ﬂ—ﬁ0|.

Thus V is continuous.
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By Lemma 1.3.3, |V (@)||zz < M for all & € R. Let

% = {(t,2)IV (@62 2 5

Then . )
1+ M
MQ]/ |V(ﬁ)(t,x)|2dtdw2[ + } 1]
0 271'
Thus 5
1+ M
< 2l .
0] < n° | 25|
Let ) = 2 — Qp = {(t,2)|[V(@)(t,2)] < L1}, then |[]| > 4n?[1 —
,_,..M_]Q > 0
1+ A "
Thus

] / o(@+ V(@)(t, z))dtds > f f ({7 + V(@) (¢, ) — a]dtda + 4r’a
Q 19
> [ [ lota+ V@)t ) ~ Bdeda + 45

where a = min,eg g(u).
Therefore, by (H15),

/ fﬂ ol + V(@)(t, 2))dtds — +o0  as 7] — +oo.

Define G: R — R by

G = Qo+ V(@) = 7 | f 9@+ V(@)(t, 2))dtdz,

G is continuous by the continuity of V' and, by (Hj ), G(4) — +00 as
%} — +oo.
Equation (1.3.5,) is then reduced to the scalar equation in @;

(1.3.12) G(a) = Qg(a+ V(@) = h.

Let by = inf,cg G(@), then ImG = [h;, +-o00[.

If G(ug) = hy, then from (1.3.9), we may easily prove (1.3.6) has one
solution in ] — 00, @[ and one in |&g, +oof by intermediate value theorem.
This completes the proof. O

REMARK 1.3.2. We may see easly that if h < h;, clearly (1.3.6) has
no solution.



868 Wan Se Kim

2. Dirichlet-periodic problem in n-space dimension

In this chapter we will discuss the multiplicity result for weak Dirichlet-
periodic problem for dissipative hyperbolic equations with coercive growth
nonlinearity in n-dimensional space. Here we have no restrictions on the
dimension of domain.

2.1. Introduction

Let R be the set of all reals and 2 € R™, n > 1, be a bounded domain
with smooth boundary 8Q which is assumed to be of class C?.

Let Q@ = (0,27) x Q and L?(Q) be the space of measurable and
Lebesgue square integrable real-valued functions on @ with usual inner
product < -,- > and corresponding norm || - {|2.

By H}(£)) we mean the completion of C}(£2) with respect to the norm

|| - }1 defined by
6|2 = [Q S 1D () d.

lar|<1

H?() stands for the usual Sobolev space; i.e., the completion of C*({2)
with respect to the norm | - ||2 defined by

9= [ 3" 10°g(e)Pds.

Let g : R — R be a continuous function. Moreover, we assume that
there exist constants ag and by such that

(Hz1) lg{u)] < aglu| +by for all u € R.

The purpose of this work is to investigate the multiplicity for periodic
saolutions of the semilinear hyperbolic equations

B Bu .
(E) ﬂg + 2 Azu — Mu+g(u) = h(t,x) in Q,
(B1) u(t,z) =0 on (0,27) x 8%,

(B2) w(0,z) = u(2m,z) on 0
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where Ay and Ay denotes the first and second eigenvalues of —A with zero
Dirichlet boundary data and ¢; is the positive normalized eigenfunction
corresponding to A, and h € L?(Q).

The purpose of this paper is to give a multiplicity result for semilin-
ear dissipative hyperbolic equations. Originally, the linear dissipative
hyperbolic equations are derived from physical principle(see [4]). The
existence and asymptotic theory of dissipative hyperbolic equations have
been developed by several authors for initial value problems, boundary
value problems, or mixed problems. For information on dissipative hy-
perbolic equations, we refer to [27]. On the existence of doubly-periodic
solutions of semilinear dissipative hyperbolic equations have been done
by Mawhin [24], Fucik and Mawhin [9]. Mawhin treat the existence of
double-periodic solutions for semilinear dissipative hyperbolic equations
of several types of g(u) with at most linear growth in connection with the
set & = {k?—j2|k,j integers}. Fucik and Mawhin consider also the exis-
tence double-periodic solutions of semilinear dissipative hyperbolic equa-
tions with nonlinear term of the form g(u) = pu™ —vu™ — ¢(u), where ¢
is a continuous and bounded function, and p, v are real numbers related
to the set 3. In [11, 16], the existence of solutions for Dirichlet-periodic
problem for semilinear dissipative hyperbolic equations at resonance,
in [15, 21], the existence of Dirichlet-periodic solutions for semilinear
dissipative hyperbolic problems with superlinear growth, in [17], the ex-
istence of double-periodic solutions for semilinear dissipative hyperbolic
equations with non-decreasing type of non-linear term, in [20, 22|, the
multiple existence of double-periodic and Dirichlet-periodic problem, re-
spectivelly, for semilinear dissipative hyperbolic equations and, in [18],
the asymptotic behavior of Dirichlet-initial problem of semi-linear dis-
sipative hyperbolic equations are discussed. Our result is related to the
results in [20, 22] which are so called the Ambrosetti-Prodi type mul-
tiplicity result which has been initiated by Ambrosetti-Prodi [1] in the
study of a Dirichlet problem to elliptic equations and developed in var-
ious directions by several authors to ordinary and partial differential
equations. For more information on this problem for semilinear elliptic,
parabolic and ordinary equations, we refer to [3, 5, 7, 12, 13, 14, 19, 23]
and their references.

In our result, we will treat a multiplicity result for Dirichlet-periodic
solutions of semilinear dissipative hyperbolic equations in n-dimensional
space. We assume the coercive growth on g with restriction on the left-
hand and our proof based on Mawhin’s continuation theorem in [10].
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2.2. Preliminary results

Let’s define the linear operator

L:DomL C L*(Q) — L*(Q)

by
DomL = {u € L2((0,2r), H*(®) N H&(Q))[% € LA(Q),
8u
W € L2(Q)7u(0?$) = u(27r7$),93 € ‘Q}
and 5 2w
u
Lu= 6& 81: — Au— /\1?1,
Using Fourier series and Parseval inequality, we get easily
Ou

(Lu, 3t> ,@[I IILz for all v € DomlL.

Hence KerL = Ker(A + /\1[ ) = KerL* since A + Al is self-adjoint
and Ker{A + X;I) is one space dimension generated by the eigenfunc-
tion ¢;. Therefore L is a closed, densely defined linear operator and
Im(L) = [KerL]'; ie., L*(Q) = KerL @ ImL. Let’s consider a conti-
nous projection Py : L?(Q) — L?(Q) such that KerP, = ImL. Then
L%(Q) = KerLP KerP;. We consider another continuous projection
Py : L2(Q) — L*(Q) defined by

(Ph)(t,x) f hit, z)p(z)dtdzd(z).

Then we have L?(Q) = ImP, @ ImL, KerP, = ImL, and L*(Q)/ImL is
isomorphism to ImP5.
Since dim[L?(Q)/ImL] = dim{lmP,] = dim{KerL] = 1, we have an
isomorphism J : ImP; — KerL.
By the closed graph theorem, the generalized right inverse of L defined
by
K= [L‘DotnLr‘lImL]_l ImI — ImlD

is continuous. If we equip the space DomL with the norm

lellpomz = f / [ 8“ )2+ 3 (DR | dtda.

|8l<2
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Then there exist a constant ¢ > 0 independently of & € ImL, u = Kh
such that
| KAliDome < cllhlizz.

Therefore K : ImL — ImL is continuous and by the compact imbedding
of DomL in L?{Q), we have that K : ImL — ImL is compact.

LEMMA 2.2.1. L is closed, densely defined linear operator such that

KerL = [ImL}*- and such that the right inverse K : ImL — ImL is
completely continuous.

Proof. See [2, 26]. O

2.3. Multiplicity result

Let us consider the following

ou O0%u _
(BY) B +5m — Deu— Mu+tpg(u) = ph(t,2) in Q,
(B1) u(t,z) =0 on (0,27) x H42,
(Ba) u(0,2) = u(27,x) on 0

where p € [0,1].
Let L : DomL C L*{(Q) — L*(Q) be defined as before. If we define a
substitution operator NZ : L2(Q) — L2(Q) by

(NE)(t,7) = nglu) — uhit, )

for w € L*(Q) and (t,z) € Q, then N/ maps continuously into itself and

take bounded sets into bounded set. Let G be any open bounded subset
of L2(Q), then P,N!' : G — L%(Q) is bounded and K(I — P2) : G —
L?(Q) is compact and continuous. Thus N}’ is L-compact on G.

The coincidence degree Di(L + NE,G) is well defined and constant
in pif Lu+ Nfu # 0 for p € [0,1] and v € DomL N JG. Tt is easy to

check that (u, i} is a weak solution of (£}') if and only if v € DomZ and

(2.3.14) Lu+ Nfu=0.
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Here, we assume the following

(Hz.2) | ltim inf g(u) = +o0,
wUi—oa
(Ha.3) lil}.loo sup |%u)| < Az — Ar

From (Hz2) and (Ha3), we may assume that

mzdggg(u)>0

and there exist a € (0, A2 — A1) and b > 0 such that
lg(u)| < alu| +bfor all uw<0.
For h € L*(Q), we write Ak = [f, h(t, z)¢(z)dtdz.

LEMMA 2.3.1. If (Hy.1), {H22), and {Hy3) are satisfied, then, for
each h* € L*(Q), there exists M(h*) > 0 independently of u such that

@l < M

holds for each possible weak solution u = a¢p + @, with « € R and 4 €
ImL, of (EX) with p € [0.1], and with Ah < AR* and ||R||L2 < ||B*| L

Proof. Suppose there exists b € L2(Q) with Ak < AR* and ||h||z2 <
|h*[jr> and the corresponding sequence of solutions {{un,p,)}, with
p € {0,1}, of {2.3.15") such that

lim ||@n |2 = oo,
n—00

then clearly
Hm ||tg{lr2 = oo.
n—0o00

For each n > 1, we put u, (¢, 2} = and{z) + . {t, z).
First, we are going to prove that

1- Ianl
1m —
n—o |[dnl L2

=c¢ < 0.
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If it is not the case, we may assume that, by extracting subsequence if
it is necessary,
L il
n—oo o)

=0.

Therefore, we may have a subsequence, say again, {i&,} such that we
have easily

lim |u,(t,z)| = o0 ae. on Q.

L— 0O

By taking the inner product with ¢ on both sides of (2.3.1}), we have

//Q g(un(t, z))p(x)dtdz = f/@ ho(x)dtdr < AR,

On the other hand, by (Hs ) and Fatou’s lemma, we have

lim fo g{un (t, z))¢p(x)dtdr = co

—0Q

which leads to a contradiction. First, we assume that 0 < ¢ < oo, then
there exist ng € N such that

(e/2Y|anlirz < |an| < (3¢/2)||%r || 2 for all n > ng.

For given e > 0, we may choose § > 0 such that

] ] ($2dtdz < €]
A

for any measurable set A C Q with |A| < 4.
Let 0 < v < ||¢]loc and £y = {z € @ : ¢(z) > ~}. Choose My > 0

such that
dMy — |m| f[@ ddtdz > fo h* ¢(x)dtdz.

Then, since lim,, . g(u) = 00, we have that
mo = sup{|y| : vg(u) < My} < 0.

We put
Qn = {(t’l:) € [01 27"—] x {2 : |un(t§$)| Z mU}'
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Then we have |Q,| < 4. In fact, if |Q,,| > §, then from the definition of
my we have

/ | sttt 2eta)anas

] / glun)d(z)dtdz + / f gl(un)@(z)dtdz
> My —m f fQ o(z)dtdz
> / fQ h* 6(z)dtdz

and this leads to a contradiction. Therefore, we have

f/ el 2 (1~ ) f/ ondf?.

On the other hand,

0=//‘Qan¢ﬁn
- f /Q it ] fQ e
<as [ /Q ol gl = [l + / /Q ol

From the definition of m and the above facts, we have, for all n > ny,

0 < (1/2)mj — (1/2)(1 — €)(c/2)llanl32 + e(3c/2)[Hin )22
= (1/2)m§ — (c/9)(1 + 5ec)|[iin |3 -

Therefore, {||@n}ir2} is bounded which leads to a contraction.

ll&n

unflpz —

Multiplying (2.3.1}) by 7 and integrate over @, we find from the peri-
odicity of u that

Next, we assume ¢ = 0, then lim,,_,

H Cllze < = llhlle.

A
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Again, taking the inner product with u, on both sides of (2.3.1%), we
have

_ du .
(A2 — A& 132 - lljﬂiﬁ < g(un)yun >< (bl L2 ||in | 2
and hence
. ~ N2 1/2 1 * |12 *
Jim sup(da=i=a)lin s < |mase(m, BJIQI? + gl I + s

Thus {||%r||z2} is bounded which leads to another contradiction. g

LEMMA 2.3.2. If (Hy,), (H2.2), and (Ho3) are satisfied, then, for
each h* € L*(Q), there exists 7 = r(h*) > 0 independently of u such
that

|| <r

holds for each possible weak solution u = 4+ 4, with & = a¢{z), a € R
and @ € ImL, of (2.3.1}) where u € [0,1], and with Ah < AR* and
Rllz2 < [|A*||z2.

Proof. Suppose there exists h € L2(Q) with Ah < AR* and |||z <
|h*||z2, and the corresponding sequence of weak solutions {{u,,pns)}
of (2.3.15™) with {|@,|} is unbounded. Then (un,u») is a solution of
(2.3.14") where up = iip + @lp with @n = ané(z) and i, € InL. We
may choose a subsequence, say again {4} with @, = an¢(x) such that
lon| = +oo as i — +o00. Now, let M > M which is given in Lemma
2.3.1. Let

Qn = {(t,a’:) € Q| lin(t, z)} > %‘F{{} .

Then

M2 > / / i (t, 2)[2dtde
Q@

> f f (i (¢, ) Pdtdz
2
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Therefore |Q,} < [1+M]2LQ| and hence |Q ~ Q.| = |{(t,z) € Qlu(t, z)|

<N 2 - el > 0.
Let W = (0.2m) x Q. Then we have |a,¢(z)] — oo for each z €
as n — oo. Hence, by Fatou's lemma and (Hj ), we have

2lim inf / [ g(and(z) + iilt, 3))$(z)dtdz
= linn_l.inf [ ] glapo(x) + @(t, 2))o(x)dtdz

> f f liminf g{and(z) + @(t, 2))p(z)dtdz
Wn(QR~Qn) "7
= Q.

Hence, there exists vo(h*) > 0 such that, for |a,| > 7o, we have

(23.1) f /Q 9(ond(@) + in(t, 7)) ¢ (x)dtdz > f fQ h* () dtdz.

On the other hand, by taking the inner product with ¢(z) on the both
sides of (2.3.1,), we have

ff gland(z) + tn(t, x))P(z)dtdz = f ho(z)dtdz < AR™
Q Q

which is impossible. The proof is complete. a

LEMMA 2.3.3. If (Hq1), (Ha2), and (Ha3) are satisfied, then, for
each h* € L*(Q), we can find an open bounded set G(h*) in L*(Q) such
that, for each open bounded set G in L*(Q) such that G 2 G(h*), we

have
Dy(L+ Ni,G)=0 forall heL*Q)

with AR < Ah* and ||h||z2 < ||R*||L2.

Proof. By similar fashion as we did in the proof of Lemma 2.3.2 to
get (2.3.1), there exists #(h*) > 0 such that, for |a] > 7, we have

f f glad(z))p(z)dtdz > f h* ¢(z)dtdz.
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Let
G(k*) = {u € L*(Q)| — Fé(z) < ad(z) < F¢(z) for z € Q, [|i] 2 < M}

where © = a¢(z) + @ with #(h*) > max{r(h*),ro(h*),7(h*)} and M >
M which are given in Lemma 2.3.1 and Lemma 2.3.2. If (2.3.17) has
a solution u for some A € L%(Q) such that Ah < 27m [, #(z)dz and
. € [0,1], then by taking the inner product with ¢ on the both sides of
the equation (2.3.1%), we have

27m /Q b(z)ds < / L o(ult, z))p()dtdz = f fQ ho(z)dtde.

Thus (2.3.1%) has no solution for & € L*(Q) such that Ah<2mm [, ¢(z)dz.
Hence, for each open bounded set G 2 G(h*), we have

Dy (L+N},G) =0 for he L*(Q)
such that AR < 2rm [, ¢(x)dz. Choose h € L*(Q) with
N < 2mm [ B(a)de and e < Koo,
]
and define
F:(DIL)NG) x [0,1] — L*(@) by
F(’U.,A) =Lu+ N(l—)\)?’t-!—,\h(u) for he L2(Q)

with Ah < AR* and ||h|| 2 < ||h*||L2- Then by Lemma 2.3.1 and Lemma
2.3.2, we have

0¢ F(D(L)NJG) x [0,1] for h e L*Q)

with Ak < AR* and ||h||zz < {|h*||z2. By the homotopy invariance of
degree, we have, for all A € L2(Q) with Ah < AR* and [|Afl2 < ||A7]| L2,
DL(L+N}1’G) = DL(F("I 1)1G)
= DL(F(vo)vG)
=D (L+N,L&)
=0

and the proof is completed. O
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THEOREM 2.3.1. Assume (Hzi), (Ha2), and (Hz3). Then there
exists a constant ap such that the boundary value problem (E), (B;),
(Ba) has at least two solutions for h such that

(2.3.2)
/f glogd(z) + ult, z))P(z)dtdx < /f hé(x)dtdx
@ Q

for every i € L?(Y) having mean value zero on (2, satisfying the condi-
tions (B1) and (Bz) such that

(2.3.3) il 2 < M.

where M is given Lemma 2.3.3.

Proof. Let
g{aod(zo) + i) = H?E%l glag(z) + ).
le] <7
ja|<am
Define

A(G(R) = {u € L*(Q)lood(2) < ad(z) < Fod(c) forz € Q, ||allzs < M}

where #p(h) > 7 which is given in Lemma 2.3.3.

If u € JAG(h), then necessary u = ao@(z) + @ or u = Fop(x) + @. If
u = apd(z) + @ with ||@]|z2 < M, then, by taking inner product with ¢
on the both sides of (2.3.1}), we have

[ fQ 9(ood(z) + (L, z))¢(z)dtdr = j jﬂ ho(x)dtdz

which, from (2.3.2) and (2.3.3), is impossible. If u = Foid{z) + @ with
|l@llz2 < M, then, by the choice of 7y > 0, we have

fo g(Fod{z) + ) g(x)dtdx > //Q h(x)dtdz

which is also impossible. Thus for u € [0,1], D(L + N[, AG(h)) is well
defined and

Di(L + N¥,AG(k)) = Dp(JP;NI', AG(h) N KerL, 0)
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where Dp is Brouwer degree and P;N. : L2(Q) — KerL is an operator
defined by

(PaNiu)(t,z) = [f/ g{u(t,z))¢(x)dtdz — [js; hdtd:z:] @(x)

Now let T : KerL — R be defined by
T(ag(z)) =
Then, for p =1,
Dy (L+ N, AG(h)) = Dg(JP, N, AG(h) N KerL,0)
= Dg(T(JPN)T 1, T(AG(h)) NKerL),0).

If we let J : ImP> — KerL be the identity map, then the operator
® = T(JP,N})T~! will be defined by

- f fQ o(od(x)o(z)dtdz — f f ho(z)dtdz.
Thus, we have ¢

B(ag) = / /Q g(cod(a))d(z)dtdz — f [ o(ayaae <o

and by the choice of 7y, we have

(i) = / /Q a(Fod())d(z)dtdz — / fQ hé(z)dtda > 0.

Hence, the coincidence degree exists and the corresponding value
[Di(L — N,AG(h))| = |Dg[JP:N}, ANKerL,0]| = 1.

Therefore, the equation (2.3.1}) has at least one solution in AG(h).
Choose G 2 AG(h), where G is defined in Lemma 2.3.3. By the
additivity of degree, we have

0=Dy(L+ N}, G = D.(L+NEAGR)) + Di(L + N, C - AGH))

and hence
|IDr(L + N, G- AG(R))| = 1.

Therefore (2.3.1} ) has another solution in G — AG(h). This proves our
assertion. ]

REMARK. If
1 .
7 ]é h(t,2)é1(@)dide < inf o),

then the boundary value problem (E), (B;), (B2) has no solution.



880 Wan Se Kim

References

[1] A. Ambrosetti and G. Prodi, On the inversion of some differentiable meppings
with singularities between Banach space, Ann. Mat. Pure Appl. 93 (1972}, 231-
247,

[2] H. Bregis and L. Nirenberg, Characterization of range of some nonlinear opera-
tors and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa
4 (1978), 225-323.

[3] R. Chiappinelli, J. Mawhin, and R. Nugari, Generalized Ambrosetti-Prodi condi-
tions for nonlinear two-point boundary value problems, J. Differential Equations
69 (1987), no. 3, 422-434.

[4] R. Courant and D. Hilbert, Method of Mathematical Physics, Inter. Pub. John
Wiley and Sons Vol. II (1962).

[5] D. G. De Figueiredo, Lectures on boundary walue problems of the Ambrosetti-
Prodi type, Atas do 12° Seminario Brasileiro de Analise Sao Paulo (1980}).

[6] S. H. Ding and J. Mawhin, A multiplicity result for periodic solutions of higher
order ordinary Differential equations, Differential Integral Equations 1 (1988},
no. 1, 31-40.

(7] C. Fabry, J. Mawhin, and M. Nkashama, A multiplicity resuit for periodic so-
lutions of forced nonlinear second order ordinary differential equations, Bull.
London Math. Soc. 18 (1986}, 173-180.

[8] S. Fucik and J. Mawhin, Generalized periodic solutions of nonlincar telegraph
equations, Nonlinear Anal. 2 (1978), no. 5, 609-617.

[9] R. G. Gains and J. Mawhin, Coincidence Degree and Nonlinear Differential
Equations, Lecture Notes in Math. Springer-Verlag (1997}, no. 568.

[10] N. Hirano and W. 8. Kim, Periodic-Dirichlet boundary value problem for semi-
linear dissipative hyperbolic equations, J. Math. Anal. Appl. 148 (1990}, no. 2,
371-377.

[11] N. Hirano and W. 8. Kim, Multiplicity end stability result for semilinear for
semilinear parabolic equations, Discrete Contin. Dynam. Systems 2 (1996), no. 2,
271-280.

[12] N. Hirano and W. S. Kim, Ezistence of stable and unstable solutions for semilin-
ear parabolic problems with o jumping nonlinearity, Nonlinear Anal. 26 (1996),
no. 6, 1143-1160.

[13] N. Hirano and W. S. Kim, Multiple existence of periodic solutions for Lienard
system, Differential Integral Equations 8 (1995), no. 7, 1805-1811.

{14 W. S. Kim, Boundary wvalue problems for nonlinear telegraph equations wilh
superlinear growth, Nonlinear Anal. 12 (1988), no. 12, 1371-1376.

, Periodic- Dirichlet boundary value problem for nonlinear dissipative hy-

perbolic equations at resonance, Bull. Korean Math. Soc. 26 (1989), no. 2, 221-

229.

{15]

[16] , Double-periodic boundary value problem for non-linear dissipative hy-
perbolic equations, J. Math. Anal. Appl. 145 {1990}, no. 1, 1-16.

, The asymptotic behavior of non-linear dissipative hyperbolic equations,
Bull. Korean Math. Soc. 29 (1992), no. 1, 371-377.

, Existence of periodic solutions for nonlinear Lienard systems, Int. J.

Math. 18 (1995), no. 2, 265-272.

(17]

(18]



Multiplicity results for periodic solutions 881

19} , Multiplicity results for Doubly periodic solutions of nonlinear dissipative

hyperbolic equations, J. Math. Anal. Appl. 197 (1996), 735-748.

, Multiplicity result for semilinear dissipative hyperbolic eguations, J.
Math. Anal. Appl. 231 (1999), 34-46.

[21] W. S. Kim and O. Y. Woo, Boundary value problem for non-linear dissipative
hyperbolic equations with superiinear growth nonlinearity, Comm. Korean Math.
Soc. 4 (1989}, no. 1, 47-57.

[22] A. C. Lazer and P. J. Mckenna, Multiplicity results for o class of semi-linear
elliptic and parabolic boundary value problems, J. Math. Anal. Appl. 107 (1985),
371-395.

[23] J. Mawhin, Periodic solutions of nonlinear telegraph eguations, in Dynamical
Systems, Bednark and Cesari, eds, Academic Press (1977).

, Topological degree methods in nonlinear boundary value problem, in
“Regional Conference Ser. Math. N40”, Amer. Math. Soc. Providence (1977).

[25] M. N. Nkashma and M. Willem, Téme periodic solutions of boundary value prob-
lems for nonlinear heat, telegraph and beam egquations, Seminarire de mathema-
tique, universite Catholique de Louvain {1984), no. Rapport no 54.

[27] O. Vejvoda, Partial Differential Equations: time-periodic solution, Martinus Ni-
jhoff Pub. (1982).

(20]

[24]

Department of Mathematics

College of Natural Sciences

Hanyang University

Seoul 133-791, Korea

E-mail: wanskim@email. hanyang.ac.kr



