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Abstract

Conventional similarity measures suggested so far can be classified into three categories:

(i) geometric similarity

measures, (ii) set-theoretic similarity measures, and (iii) matching function-based similarity measures. On the basis of

the characteristics of the conventional similarily measures,

in this paper, we propose a new similarity measure of

fuzzy sets and invesligate its properties. Finally, numerical examples are provided for the comparison of characteristics
of the proposed similarity measure and other previous similarity measures.
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1. Introduction

In recent years, traditional mathematical model-based
technicques for modeling of complex and uncertain
systems are being replaced by a linguistic approach
using fuzzy sels. The basic idea of fuzzy modeling is to
represent the system by a set of fuzzy il-then rules that
maps [uzzy partitioned input space to outputs, that is,
approximates the fuzzy partitioned system by a simple
linguistic model.

In a fuzzy model developed by using expert knowledge
or numerical data, the redundancy and thus complexity
due to similar fuzzy sets representing compatible
concepts is inevitable. This results in a computationally
nelficient and linguistically intractable description of the
system. Several methods (e.g., similarity measure-hased
simplification [6] and the statistical information
criterion-based model construction [11]) “have heen
proposed for~ the construction of adequate but
parsimonious fuzzy models.

Since Zadeh's work [15], a lot of attentions have been
paid for the development of new similarity measures and
their applications. Similarity measures suggested so far
can be classified into three categories [1]: (i) geometric
similarity measures,(ii) set-theoretic similarity measures
and (i) matching functon—based similarity measures.
Properties of those have been investigated for providing
some useful information to select a suitable similarity
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measure in applications of fuzzy sets by many authors
[158]. It has been argued that geometric similarity
measures representing similarity as proximity of fuzzy
sets are hest suited for measuring similarity among
distinct fuzzy sets, while the set-theoretic similarity
measures are the most suitable for capturing similarity
among overlapping fuzzy sets [8).

Under the background, in this paper, we propose a
new similarity measure and investigate its properties.
Two numerical examples are provided for the
comparison belween the proposed measure and other
previous similarity measures.

2. Similarity measures

In the following, let A and B be fuzzy sets of the
discrete universe of discowrse X ={xy,X3,...,X,}. Let
ay} and b={b,,bs,...,b,} be the
vector representations of the fuzzy sets A and B,
respectively, where a; and b; are membership values

a#{al,ag, T

£a(x;) and  zp(x;) with respect to x; and x; G, ] =

1, 2,...n), respectively. The support supp(A) of a fuzzy
set A is the crisp set of all x; X such that #a(x;)
> O

supp(A) ={x;lua(x:)>0}.

Furthermore, let F(X) be the class of all fuzzy sets of

X. A*EFX) is the complement of AGF(X). The A and
V'  operators denote the minimum and maximur,

respectively.



defined as

[Al= X%(ﬂA(Xi)-

A oneparameter Minkowski
distance functions is defined as follows:

class dJ a.b) of

dfa, b)=1 gllai— BTV 1.

The concept of similarity is generally interpreted as
having the same shape, but not the same size or
position. It may be interpreted in different ways
depending on the context and situations. In fuzzy set
theory and applications, the concept of similarity is
generally interpreled as a generalization of the concept of
equality. On the basis of this interpretation, we define
similarity between [uzzy sels as the degree to which the
fuzzy sets are equal.

The similarity measure is a functlon assigning a
similarity value to the pair of fuzzy sets (AB) that
indicates the degree to which A and B are equal or how
similar they are. It is also required that the similarity
measures should satisfy the following properties [4]:

(P1) S(A,B) = 8(B,A), A, BEF.

(P2) S, D =0, if D is a crisp set.

(P3) S(E,E) = max A,BEI;S(A,B), for all EF.
(P4) f ASB<C for all A, B, CEF

then S(A,B)=S(A,C) and S(B,C)=5(A, C).

Under these backgrounds, several different measures
of similarity have been proposed for measuring similarity
among fuzzy sets [1-3, 7, 9, 10, 12-14%:

(i) Measures based on the geometric distance model

L(A,B)=1—dw(a,b)=1— mflx (la;=b)

2(51(3 b) lzllai_bi[

W(A,B)=1————"—— l—f )

n
2 la;—

S.(A,B)y=1-— (3)

||M:

Geometric similarity measures represent similarity as
proximity of fuzzy sets, and not as a measure of
equality. Thus, the geometric similarity measures are
best suited for measuring similarity among distincl fuzzy
sets.

(ii) Measures based on the set-theoretic approach

gl(ai/\bi)
zl(ai\/bi)

IANB| _
AUBI

M(A,B)=

A similarity measure of fuzzy sets

T(A, B)—

=1T13X(#Am3(x1) #Amg(xz) --,#Ams(xn))

2a/\b

Il 1=1 1
Zlai/\bi
max( B, 2y0)

M(ANB)
M(A)+M(B)—-M(ANB)

where M(A) is the size of [uzzy set A

X M ADB(X ) (5)

S, (A,B)= 6)

S(A,B)= (7

S;(A,B)=

@

M(A) = [ A ax.

The interpretation of similarity as  approximate
quality can better be represented by a set-theoretic
similarity measures based on set-theoretic operations
such  as union and intersection. Therefore, the
set-theoretic  similarity measures are suitable for
capturing similarity among overlapping fuzzy sets.

(iii) Measures based on the matching function and
correlation

a-b
max{a-a,b-b)

P(A.B)=S(A,B)= €

k(A, B)W%%ﬁ% (10)
where

T(A) = 2 fa+(1-a)7]
and

C(A,B)= Rla b+ (1=a) - (1-b)]

The larger the values of the above all similarity
measures, the more the similarity between the fuzzy sets
A and B.

Under the background, we will define a similarity
measure Sgx: F’—R "' between fuzzy sets A and B as

follows.

Dcfinition 1. For A, BEF(X) we define

Sx(A,B)= (1)

and we call it the similarity measure of A and B.

Proposition 2. For A, BEF (X) we have Syg(AB) =
Sk (B, A).
The proof is obvious.
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Proposition 3. Sg(D,D®) =0, if D is a crisp set.
The proof is obvious.

Proposition 4. Sx(E,E)= max 5 5¢Sx(A,B), for

all EEF(X).
The proof is obvious.

Proposition 5. If ASBEC for all A, B, CEFX),

then Sk(A,B)=5¢(A,C) and
Sk(B,C)=z5k(A,C).

Proof. Since AEBEC implies a;<b;<c;,
PEEPHEDH
Zlai . b,S Zlai *Ci= Zlbi s Cy and

gla?g glbizé Zlc?, then

Sk(A,B) =Sk (A,Q)

_ Z“ai- b, gﬂx' e
= ﬁ‘ia‘f'%' Z‘ib?— Igaz . b, - i‘laﬁ- Z;Cf_ Sae
glai' (c,— &) - (Bei— &)
( Zl(a’_b’)z"' Z:lai’ er‘IGHT)( Z](a,— e)t+ z‘la[. i)
ga,- (e,=b) - (Bi—ad)
!
( Z] (a;— b)%+ 12(1" buat:u‘[)( 21(0’_67')2'{' giai' C[)

=0.

=

Futhermore
Sk(B,C)—5x (A,C)

B Z;b,' ¢, 3 ’Za,-c,
- ;bf-&- ’f‘cfwgbi-c; Za?-ﬁ-zc?‘—iia,-c,
Ii;:lcg (b,—a) (ci—a,"b)
( gl(b,—c,)2+ Zlb," C,mr_mr)( 21(12,— e+ zar ¢
‘Zc,- (B,—a) - (ct—dh

= ( ﬁ_‘ll(b,—r:i)Q-f—_Z;bX . c,-R,G,_,T)( ,ﬁ__:i(a:_cf)h-" Z’lf' 5';)
=0.

Hence Sk(A,B)=Sk(A,B)
Sk(B,C)=Sk(A, Q).

and
Proposition 6. For A, BEFX) we have
if A=B, then Sg(A,B)=1.

The proof is obvious.

Proposition 7. For A, BEF(X) we have
0=Sx(A,B)<1.
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Proof. First we will show that the first inequality

Sx(A,B)=0 holds. Since a, =0, b,=0 implies
a-b= 2.8 b;=0 we obtain
i‘lai - b;
Sk(A,B)= o

Furthermore, we have

at+ SibP- 2ai-b,— a;-b,
— Sd+ Rp -2 Ra. b

- g(a,—bi)220

which proves the second inequality and completes the
proof,

Proposition 8. For A, BEF(X),
only if A=DB.

Skg(A,B)=1 if and

Proof. The sufficiency is obvious.
Necessity: Suppose

‘Zaiz'l‘ z‘b?— ‘g‘lal b= 1Zai -,

Le,
al+ $1bP-23%a, b= 23(a,~b)?=0.

This implies a,—b;=0, ie, a;=bh; for all iG=1, -,

n) and the proof is completed.

3. Numerical examples

In this section we provide two numerical examples
showing the characteristics of the proposed similavity
measure Sg(A,B) and other similarity measures, ie., 1)
measures based on the geometric distance model: L(AB),
W(AB), and S52(AB), i) measures based on the
set-theoretic approach: M(AB), T(AB),S4(AB), the
similarity ratio Sr(AB), and SJ(A B), iii) Measures based
ont the matching function and correlation: P(AB) and the
correlation coelficientk(A,B). The first one is an example
showing the behavior of similarity measures for fuzzy
sets with varying degree of height. The second one is an



example showing the behavior of similarity measures [or
fuzzy sets with varying degree of overlap.

In computer implementation, continuous domains have
been discretized. Each result has been obtained by using
the MATLAB on the discretizeddomains.

Example 1. Consider two fuzzy sets A and B defined as
shown in Fig. 1 (a) and (b). The behavior of the
similarity measures for a fixed fuzzy set A and a fuzzy
set B with varving degres of height from 0 to 1 is
shown in Fig. 2. The abscissa andordinate of Fig. 2
represent the height of the fuzzy set B and the similarity
degree between A and B, respectively.

1 1

05 0.5

0 0
D 05 1 0 05 1

(a) fuzzy set A(h) fuzzy set B
Fig. 1. Fuzzy zets A and B.

It may be difficult to say which similarity measure
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1 1 1
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0 0 0
o 08 t 0O 05 1 0 Q& 1
(d) M(A,B) (e) T(AB) (f) S4(AB)

1 1 1

05 05 0.5

0 0 0
o 05 1 0 05 1 o gb 1
(g) Sr(A,B) (h) SJAB) i) P(AB)

1 /,.«— 1

0.5 05

0 0
o o 1 0D 05 1

(G) k(AB) (k) SK(AB)
Fig 2. The behavior of the similarity measures.

is the best (in the sense of the reliablility) from Fig. 2.

A similarity measure of fuzzy sets

But we have the following remarks: We can see that the
behavior of the similarity measures $S2(A,B), k(AB) and
the proposed SK(A,B) is nonlinearbut the other similarity
measures investigated in this example shows the linear
behavior as the height of the fuzzy set B varies from 0
to 1.

Example 2. Consider two fuzzy sets A and B defined as
shown in Fig, 3. The behavior of the similarity measures
for a fixed fuzzy set A and a fuzzy set B with varying
degree of overlap is shown in Fig. 4. The abscissa
andordinate of Fig. 2 represent the degree of overlap of
the fuzzy sets A and B, and the similarity degree
between A and B, respectively.

1

0.5

0
o} 1 2

Fig. 3. Fuzzy sets A and B.
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(a) L(A, B)  (b) W(A, B)  (c) S2(A, B)
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(d) M(A, B) (e) T(A, B) (f) S4(A, B)
1 1 1 /
05 0s ns /
//
0 0
L1 0 1 - 0 1 -1 1] 1
(g) Sr(A, B) () SJ(A, B) (1) P(A, B)
1 _/ 1
05 05 /
1/

0
-1 a 1 -1 0 1

() k(A, B) (k) SK(A, B)
Fig 4. The behavior of the similarity measures.

From Fig. 3 and 4, we have the following remarks. By

intuitional observation, we can see that the similarity
measures W(A, B) and k(A, B) providing much larger
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values than those of the others seems not reliable for us.

From the above discussion on the properties and
numerical examples, we can conclude that the proposed
similarity measure SK(AB) can be useful in the
classification of some similar sets even though it is hard
to say that the proposed similarity measure is the best.

4. Conclusions

‘We have proposed a new similarity measure of fuzzy
sets and examine its properties. Nurmnerical examples
have bheen provided to compare the characteristics of the
proposed similarity measure and other similarity
measures,

Future work is to research on the investigation of
other properties and characteristics of the proposed
measure and its applications to modeling of fuzzy
systems.
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