Fuzzy Strongly r-Semineighborhoods

Seok Jong Lee*, Seung On Lee*, and Ju Hui Park**

*Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

**Department of Mathematics, Yonsei University, Seoul 120-749, Korea

Abstract

In this thesis, we introduce and investigate the notions of a fuzzy strongly r-semineighborhood and a fuzzy strongly r-quasi-semineighborhood in fuzzy topological spaces which are generalizations of a fuzzy strongly semineighborhood and a fuzzy strongly quasi-semineighborhood, respectively.

Key Words: fuzzy strongly r-semineighborhood, fuzzy strongly r-quasi-semineighborhood

1. Introduction and Preliminaries

E. P. Lee and S. J. Lee[5] introduced the concepts of fuzzy strongly r-semiopen sets and fuzzy strongly r-semicontinuous maps, which generalized the concepts of fuzzy strongly semiopen sets and fuzzy strongly semicontinuous maps of Shi-Zhong Bai[9].

In this thesis, we introduce and investigate the notions of a fuzzy strongly

r-semineighborhood and a fuzzy strongly r-quasisemineighborhood in fuzzy topological spaces which are generalizations of a fuzzy strongly semineighborhood and a fuzzy strongly quasi-semineighborhood, respectively.

We will denote the unit interval [0,1] of the real line by I and $I_0=(0,1]$. A member μ of I^X is called a fuzzy set in X. For any $\mu \in I^X$, μ^c denotes the complement $1-\mu$. By 0 and 1 we denote constant maps on X with value 0 and 1, respectively. All other notations are standard notations of fuzzy set theory.

A Chang's fuzzy topology on X is a family T of fuzzy sets in X which satisfies the following properties:

- (1) 0, $1 \in T$.
- (2) If $\mu_1, \mu_2 \in T$ then $\mu_1 \wedge \mu_2 \in T$.
- (3) If $\mu_i \in T$ for each i, then $\bigvee \mu_i \in T$.

The pair (X, T) is called a Chang's fuzzy topological space.

A fuzzy topology on X is a map $T: I^X \rightarrow I$ which satisfies the following properties:

(1) $T(\tilde{0}) = T(\tilde{1}) = 1$.

접수일자: 2001년 2월 1일 완료일자: 2001년 3월 21일

- (2) $T(\mu_1 \wedge \mu_2) \ge T(\mu_1) \wedge T(\mu_2)$.
- (3) $T(\bigvee \mu_i) \ge \bigwedge T(\mu_i)$.

The pair (X, T) is called a fuzzy topological space.

Definition 1.1. ([6]) Let μ be a fuzzy set in a fuzzy topological space (X, T) and $r \in I_0$. Then μ is called

- (1) a fuzzy r-open set in X if $T(\mu) \ge r$,
- (2) a fuzzy r-closed set in X if $T(\mu^i) \ge r$.

Definition 1.2. ([3,6]) Let (X, T) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-closure is defined by

$$\operatorname{cl}(\mu, r) = \bigwedge \{ \rho \in I^X : \mu \leq \rho, T(\rho^c) \geq r \},$$

and the fuzzy r-interior is defined by

$$\operatorname{int}(\mu, r) = \bigvee \{ \rho \in I^X : \mu \ge \rho, T(\rho) \ge r \}.$$

Definition 1.3. ([6,7]) Let μ be a fuzzy set in a fuzzy topological space (X, T) and $r \in I_0$. Then μ is said to be

- (1) fuzzy r-semiopen if there is a fuzzy r-open set ρ in X such that $\rho \le \mu \le \operatorname{cl}(\rho, r)$,
- (2) fuzzy r-semiclosed if there is a fuzzy r-closed set ρ in X such that $\operatorname{int}(\rho, r) \le \mu \le \rho$,
- (3) fuzzy r-preopen if $\mu \le int(cl(\mu, r), r)$,
- (4) fuzzy r-preclosed if $cl(int(\mu, r), r) \le \mu$.

Definition 1.4. ([5]) Let μ be a fuzzy set in a fuzzy topological space (X, T) and $r \in I_0$. Then μ is said to be

- (1) fuzzy strongly r-semiopen if there is a fuzzy r -open set ρ in X such that $\rho \le \mu \le \inf(\operatorname{cl}(\rho, r), r)$,
- (2) fuzzy strongly r-semiclosed if there is a fuzzy r -closed set ρ in X such that $\operatorname{cl}(\operatorname{int}(\rho, r), r) \leq \mu \leq \rho$.

Theorem 1.5. ([5])

- (1) Any union of fuzzy strongly r-semiopen sets is fuzzy strongly r-semiopen.
- (2) Any intersection of fuzzy strongly r-semiclosed sets is fuzzy strongly r-semiclosed.

Definition 1.6. ([5]) Let (X, T) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy strongly r-semiclosure is defined by

 $\operatorname{sscl}(\mu, r) = \bigwedge \{ \rho \in I^X : \mu \leq \rho, \rho \text{ is fuzzy strongly } r - \text{semiclosed} \},$

and the fuzzy strongly r-semiinterior is defined by

ssint $(\mu, r) = \bigvee \{ \rho \in I^X : \mu \ge \rho, \rho \text{ is fuzzy strongly } r - \text{semiopen } \}.$

For $x \in X$ and for each $\alpha \in (0,1]$, a fuzzy point x_{α} in X is a fuzzy set in X defined by

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}$$

In this case, x and α are called the support and the value of x_{α} , respectively. A fuzzy point x_{α} is said to belong to a fuzzy set μ in X, denoted by $x_{\alpha} \in \mu$, if $\alpha \leq \mu(x)$. A fuzzy set μ in X is the union of all fuzzy points which belong to μ .

A fuzzy point x_{α} in X is said to be quasi-coincident with μ , denoted by $x_{\alpha}q\mu$, if $\alpha + \mu(x) > 1$. A fuzzy set ρ in X is said to be quasi-coincident with a fuzzy set μ in X, denoted by $\rho q\mu$, if there is an $x \in X$ such that $\rho(x) + \mu(x) > 1$.

Definition 1.7. ([4,7]) Let x_{α} be a fuzzy point of a fuzzy topological space (X, T) and $r \in I_0$. Then a fuzzy set μ in X is called

- (1) a fuzzy r-neighborhood (fuzzy r-semineighborhood, fuzzy r-preneighborhood, respectively) of x_{α} if there is a fuzzy r-open (fuzzy r-semiopen, fuzzy r-preopen, respectively) set ρ in X such that $x_{\alpha} \in \rho \leq \mu$,
- (2) a fuzzy r-quasi-neighborhood (fuzzy r-quasi-se-mineighborhood, fuzzy r-quasi-preneighborhood, respectively) of x_a if there is a fuzzy r-open (fuzzy r-semiopen, fuzzy r-preopen, respectively) set ρ in X such that $x_a \neq \rho \leq \mu$,

2. Fuzzy strongly resemineighborhoods

We are going to define the concepts of a fuzzy strongly r-semineighborhood and a fuzzy strongly r-quasi-semineighborhood in a fuzzy topological space.

Definition 2.1. Let x_{α} be a fuzzy point of a fuzzy topological space (X, T) and $r \in I_0$. Then a fuzzy set μ in X is called

- (1) a fuzzy strongly r-semineighborhood of x_a if there is a fuzzy strongly r-semiopen set ρ in X such that $x_a \in \rho \leq \mu$,
- (2) a fuzzy strongly r-quasi-semineighborhood of x_{α} if there is a fuzzy strongly r-semiopen set ρ in X such that $x_{\alpha} \neq \rho \leq \mu$.

Clearly, if μ is a fuzzy strongly r-semineighborhood (strongly r-quasi-semineighborhood) of x_{α} and $r \ge t$, then μ is also a fuzzy strongly t-semineighborhood (strongly t-quasi-semineighborhood) of x_{α} .

Theorem 2.2. Let (X, T) be a fuzzy topological space and $r \in I_0$. Then a fuzzy set μ in X is fuzzy strongly r -semiopen if and only if μ is a fuzzy strongly r -semineighborhood of x_{α} for every fuzzy point $x_{\alpha} \in \mu$.

Proof. Let μ be any fuzzy strongly r-semiopen set of X and $x_a = \mu$. Put $\rho = \mu$. Then ρ is a fuzzy strongly r-semiopen set in X and $x_a = \rho \leq \mu$. Thus μ is a fuzzy strongly r-semineighborhood of x_a .

Conversely, let $x_{\sigma} \in \mu$. Since μ is a fuzzy strongly r-semineighborhood of x_{σ} , there is a fuzzy strongly r-semiopen set $\rho_{x_{\sigma}}$ in X such that $x_{\sigma} \in \rho_{x_{\sigma}} \leq \mu$. So we have

$$\mu = \bigvee \{x_{\alpha}; x_{\alpha} \in \mu\} \leq \bigvee \{\rho_{x_{\alpha}}; x_{\alpha} \in \mu\} \leq \mu.$$

Thus $\mu = \bigvee \{ \rho_{x_a} : x_a \in \mu \}$. Since arbitrary join of fuzzy strongly r-semiopen sets is fuzzy strongly r-semiopen, μ is fuzzy strongly r-semiopen.

Theorem 2.3. Let (X, T) be a fuzzy topological space and $r \in I_0$. Then a fuzzy set μ in X is fuzzy strongly r -semiopen if and only if μ is a fuzzy strongly r -quasi-semineighborhood of x_a for every fuzzy point x_a q μ .

Proof. Let μ be any fuzzy strongly r-semiopen set of X and $x_{\alpha} \neq \mu$. Put $\rho = \mu$. Then ρ is a fuzzy strongly r-semiopen set in X and $x_{\alpha} \neq \mu$. Thus μ is a fuzzy strongly r-quasi-semineighborhood of x_{α} .

Conversely, let x_{α} be any fuzzy point in μ such that $\alpha \langle \mu(x) \rangle$. Then $x_{1-\alpha}q\mu$. By the hypothesis, μ is a fuzzy strongly r-quasi-semineighborhood of $x_{1-\alpha}$. Thus there is a fuzzy strongly r-semiopen set ρ_{x_c} in X such that $x_{1-\alpha}q\rho_{x_c} \leq \mu$. Hence $\alpha \langle \rho_{x_c}(x) \rangle$ and $\rho_{x_c} \leq \mu$. So we have

 $\mu = \bigvee \{x_{\alpha}; x_{\alpha} \text{ is a fuzzy point in } \mu \text{ such that } \alpha \langle \mu(x) \}$ $\leq \bigvee \{\rho_{x_{\alpha}}; x_{\alpha} \text{ is a fuzzy point in } \mu \text{ such that } \alpha \langle \mu(x) \}$ $\leq \mu.$ Thus $\mu = \bigvee \{ \rho_{x_e} : x_{\alpha} \text{ is a fuzzy point in } \mu \text{ such that } \alpha < \mu(x) \}$. Since each ρ_{x_e} is fuzzy strongly r-semiopen, μ is fuzzy strongly r-semiopen.

Theorem 2.4. Let x_a be a fuzzy point in a fuzzy topological space (X, T) and $r \in I_0$. Then $x_a \in \operatorname{sscl}(\mu, r)$ if and only if $\rho \neq \mu$ for all fuzzy strongly r -quasi-semineighborhood ρ of x_a .

Proof. Suppose that there is a fuzzy strongly r-quasi-semineighborhood ρ of x_{α} such that $\rho d\mu$. Then there is a fuzzy strongly r-semiopen set λ such that $x_{\alpha}q\lambda \leq \rho$. So $\lambda d\mu$ and hence $\mu \leq \lambda^c$. Since λ^c is fuzzy strongly r-semiclosed, $\operatorname{sscl}(\mu,r) \leq \operatorname{sscl}(\lambda^c,r) = \lambda^c$. On the other hand, since $x_{\alpha}q\lambda$, we have $x_{\alpha} \not \in \lambda^c$. Hence $x_{\alpha} \not \in \operatorname{sscl}(\mu,r)$. This is a contradiction.

Conversely, suppose $x_a \notin \operatorname{sscl}(\mu, r)$. Then there is a fuzzy strongly r-semiclosed set η such that $\mu \le \eta$ and $x_a \notin \eta$. Then since η^c is fuzzy strongly r-semiopen and $x_a \neq \eta^c$, η^c is a fuzzy strongly r-quasi-semineighborhood of x_a . By the hypothesis, $\eta^c \neq \mu$. Hence $\mu \not= (\eta^c)^c = \eta$. This is a contradiction.

Theorem 2.5. Let x_{α} be a fuzzy point in a fuzzy topological space (X, T) and $r \in I_0$. Then $x_{\alpha} \in \operatorname{ssint}(\mu, r)$ if and only if there is a fuzzy strongly r -semineighborhood ρ of x_{α} such that $\rho \leq \mu$.

Proof. Let $x_a \in \text{ssint}(\mu, r)$. Then there is a fuzzy strongly r-semiopen set ρ such that $x_a \in \rho$ and $\rho \leq \mu$.

Conversely, suppose that there is a fuzzy strongly r-semineighborhood ρ of x_{α} such that $\rho \leq \mu$. Then there is a fuzzy strongly r-semiopen set λ such that $x_{\alpha} \in \lambda \leq \rho \leq \mu$. Thus $x_{\alpha} \in \text{ssint } (\mu, r)$.

Remark 2.6. (1) Every fuzzy r-neighborhood (r-qu-asi-neighborhood) of x_{α} is also a fuzzy strongly r-semineighborhood (strongly r-quasi-semineighborhood) of x_{α} .

- (2) Every fuzzy strongly r-semineighborhood (strongly r-quasi-semineighborhood) of x_{α} is also a fuzzy r-semineighborhood (r-quasi-semineighborhood) of x_{α} .
- (3) Every fuzzy strongly r-semineighborhood (strongly r-quasi-semineighborhood) of x_a is also a fuzzy r-preneighborhood (r-quasi-preneighborhood) of x_a .

Following examples show that their converses need not be true in general.

Example 2.7. Let $X = \{a, b\}$ and μ_1 and μ_2 be fuzzy sets in X defined by $\mu_1(a) = \frac{3}{5}$, $\mu_1(b) = \frac{1}{10}$ and

$$\mu_2(a) = \frac{7}{10}, \quad \mu_2(b) = \frac{9}{10}. \text{ Define } T: I^X \to I \text{ by}$$

$$T(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \\ 0 & \text{otherwise.} \end{cases}$$

Then clearly T is a fuzzy topology on X. Let x=b and $\alpha=\frac{1}{5}$. Then $x_{\alpha}{\in}\mu_2$ and μ_2 is fuzzy strongly $\frac{1}{2}$ —semiopen. Thus μ_2 is a fuzzy strongly $\frac{1}{2}$ —semineighborhood but not fuzzy $\frac{1}{2}$ —neighborhood. Also μ_2 is a fuzzy strongly $\frac{1}{2}$ —quasi—semineighborhood of x_{α} which is not a fuzzy $\frac{1}{2}$ —quasi—neighborhood of x_{α} .

Example 2.8. Let $X = \{a, b\}$ and μ_1 and μ_2 be fuzzy sets in X defined by $\mu_1(a) = \frac{1}{2}$, $\mu_1(b) = \frac{2}{5}$ and $\mu_2(a) = \frac{1}{2}$, $\mu_2(b) = \frac{3}{5}$. Define $T: I^X \to I$ by

$$T(\mu) = \begin{cases} \frac{1}{\frac{1}{2}} & \text{if } \mu = \hat{0}, \hat{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_{1}, \\ 0 & \text{otherwise.} \end{cases}$$

Then clearly T is a fuzzy topology on X. Let x=b and $\alpha=\frac{1}{2}$. Then $x_{\alpha}{\in}\mu_2$ and μ_2 is fuzzy $\frac{1}{2}$ -semiopen. Thus μ_2 is a fuzzy $\frac{1}{2}$ -semineighborhood but not fuzzy strongly $\frac{1}{2}$ -semineighborhood. Also μ_2 is a fuzzy $\frac{1}{2}$ -quasi-semineighborhood of x_{α} which is not a fuzzy strongly $\frac{1}{2}$ -quasi-semineighborhood of x_{α} .

Example 2.9. Let $X = \{a, b\}$ and μ_1 and μ_2 be fuzzy sets in X defined by $\mu_1(a) = \frac{1}{2}$, $\mu_1(b) = \frac{1}{3}$ and $\mu_2(a) = \frac{1}{2}$, $\mu_2(b) = \frac{11}{15}$. Define $T : I^X \to I$ by

$$T(\mu) = \begin{cases} \frac{1}{2} & \text{if } \mu = 0, 1, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \\ 0 & \text{otherwise.} \end{cases}$$

Then clearly T is a fuzzy topology on X. Let x=b and $\alpha=\frac{8}{15}$. Then $x_{\alpha}{\in}\mu_2$ and μ_2 is a fuzzy $\frac{1}{2}$ -preopen. Thus μ_2 is a fuzzy $\frac{1}{2}$ -preneighborhood but not fuzzy strongly $\frac{1}{2}$ -semineighborhood. Also μ_2 is a fuzzy $\frac{1}{2}$ -quasi-preneighborhood of x_{α} which is not a fuzzy strongly $\frac{1}{2}$ -quasi-semineighborhood of x_{α} .

Let (X, T) be a fuzzy topological space. For each

 $r \in I_0$, an r-cut

$$T_r = \{ \mu \in I^X : T(\mu) \ge r \}$$

is a Chang's fuzzy topology on X.

Let (X, T) be a Chang's fuzzy topological space and $r \in I_0$. A fuzzy topology $T^r : I^X \to I$ is defined by

$$T''(\mu) = \left\{ \begin{array}{ll} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ r & \text{if } \mu \in T - \{\tilde{0}, \tilde{1}\}, \\ 0 & \text{otherwise.} \end{array} \right.$$

The next two theorems show that a fuzzy strongly semineighborhood [9] is a special case of a fuzzy strongly γ -semineighborhood.

Theorem 2.10. Let \mathcal{X}_{α} be a fuzzy point of a fuzzy topological space (X, T) and $r \in I_0$. Then a fuzzy set μ is a fuzzy strongly r-semineighborhood (strongly r-quasi-semineighborhood) of \mathcal{X}_{α} in (X, T) if and only if μ is a fuzzy strongly semineighborhood (strongly quasi-semineighborhood) of \mathcal{X}_{α} in (X, T_r) .

Proof. Straightforward.

Theorem 2.11. Let x_{α} be a fuzzy point of a Chang's fuzzy topological space (X, T) and $r \in I_0$. Then a fuzzy set μ is a fuzzy strongly semineighborhood (strongly quasi-semineighborhood) of x_{α} in (X, T) if and only if μ is a fuzzy strongly r-semineighborhood (strongly r-quasi-semineighborhood) of x_{α} in (X, T).

Proof. Straightforward.

The product fuzzy set $\mu \times \rho$ of a fuzzy set μ of X and a fuzzy set ρ of Y is defined by

$$(\mu \times \rho)(x, y) = \mu(x) \wedge \rho(y)$$

for all $(x, y) \in X \times Y$.

Let (X, T) and (Y, U) be fuzzy topological spaces and $r \in I_0$. Then X is r-product related to Y if any fuzzy set μ of X and any fuzzy set ρ of Y,

$$\operatorname{cl}(\mu \times \rho, r) = \operatorname{cl}(\mu, r) \times \operatorname{cl}(\rho, r).$$

Let $\{(X_i, T_i)\}_{i \in J}$ be a family of fuzzy topological spaces. Let $X = \prod X_i$ and

 $p_i: X \to X_i$, $i \in J$, denote the projection map. Let $(T_i)_r$ denote the Chang's

fuzzy topology on X_i for $i \in J$, $r \in I_0$. Let

$$\prod (T_i)_r = \sup_{i \in I} p_i^{-1}((T_i)_r)$$

be the Chang's fuzzy topology generated by $\{p_i^{-1}((T_i)_r)\}_{i=I}$ as a subbase.

Let T be the fuzzy topology generated by $\{\prod (T_i)_r\}_{0 \le r \le 1}$. That is

$$T(\mu) = \bigvee \{ r \in I_0 : \mu \in \prod (T_i)_r \}.$$

Then T is called the product fuzzy topology on X and denoted by $\prod T_i$.

Lemma 2.12. Let $r \in I_0$ and a fuzzy topological space (X, T) be

r-product related to a fuzzy topological space (Y, U). Then for any fuzzy set μ of X and any fuzzy set ρ of Y, $\operatorname{int}(\mu \times \rho, r) = \operatorname{int}(\mu, r) \times \operatorname{int}(\rho, r)$.

Proof. Let μ be any fuzzy set in X and ρ any fuzzy set in Y. Then

 $int(\mu \times \rho, r)$

- = int(($(\mu \times \rho)^c$)^c, r)
- $= \operatorname{cl}((\mu \times \rho)^c, r)^c$
- $= \operatorname{cl}((\mu^c \times \tilde{1}) \bigvee (\tilde{1} \times \rho^c), r)^c$
- = $[\operatorname{cl}(\mu^c \times \tilde{1}, r) \bigvee \operatorname{cl}(\tilde{1} \times \rho^c, r)]^c$
- = $[(\operatorname{cl}(\mu^c, r) \times \operatorname{cl}(\tilde{1}, r)) \vee (\operatorname{cl}(\tilde{1}, r) \times \operatorname{cl}(\rho^c, r))]^c$
- $= [(\operatorname{cl}(\mu^{c}, r) \times \hat{1}) \setminus (\hat{1} \times \operatorname{cl}(\rho^{c}, r))]^{c}$
- = $[(int(\mu, r)^c \times \hat{1}) \bigvee (\hat{1} \times int(\rho, r)^c)]^c$
- = $[(int(\mu, r) \times int(\rho, r))^c]^c$
- $= \operatorname{int}(\mu, r) \times \operatorname{int}(\rho, r).$

Hence the theorem follows.

Theorem 2.13. Let (X,T) and (Y,U) be fuzzy topological spaces and $r \in I_0$. If X is \mathscr{V} -product related to Y, then the product $\mu \times \rho$ of a fuzzy strongly \mathscr{V} -semiopen(strongly \mathscr{V} -semiclosed) set μ in X and a fuzzy strongly \mathscr{V} -semiopen(strongly \mathscr{V} -semiclosed) set ρ in Y is fuzzy strongly \mathscr{V} -semiopen(strongly \mathscr{V} -semiclosed) in the product fuzzy topological space $X \times Y$.

Proof. Let μ and ρ be fuzzy strongly r-semiopen sets in X and Y respectively. Then there are fuzzy r-open sets μ_1 in X and ρ_1 in Y, such that $\mu_1 \leq \mu \leq \inf$ (cl(μ_1, r), r) and $\rho_1 \leq \rho \leq \inf$ (cl(ρ_1, r), r). Then $\mu_1 \times \rho_1$ is fuzzy r-open in $X \times Y$. Since X is r-product related to Y, from the Lemma 2.12, we have

$$\mu_1 \times \rho_1 \le \mu \times \rho \le \inf(\operatorname{cl}(\mu_1, r), r) \times \inf(\operatorname{cl}(\rho_1, r), r)$$

$$= \inf(\operatorname{cl}(\mu_1, r) \times \operatorname{cl}(\rho_1, r), r)$$

$$= \inf(\operatorname{cl}(\mu_1 \times \rho_1, r), r).$$

Hence $\mu \times \rho$ is fuzzy strongly r-semiopen in $X \times Y$. Similarly, if μ and ρ are fuzzy strongly r-semiclosed sets then $\mu \times \rho$ is also fuzzy strongly r-semiclosed.

References

- [1] C. L. Chang, "Fuzzy topological spaces," J. Math. Anal. Appl., vol. 24, pp. 182–190, 1968.
- [2] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, "Gradation of openness: Fuzzy topology," Fuzzy Sets and Systems, vol. 49, pp. 237–242, 1992.
- [3] K. C. Chattopadhyay and S. K. Samanta, "Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness," *Fuzzy Sets and Systems*, vol. 54, pp. 207–212, 1993.
- [4] E. P. Lee, Various kinds of continuity in fuzzy topological spaces. PhD thesis, Chungbuk National University, 1998.
- [5] E. P. Lee and S. J. Lee, "Fuzzy strongly r-semi-continuous maps," *Proceedings of the Third Asian Fuzzy Systems Symposium*, pp. 370-375, 1998.
- [6] E. P. Lee and S. J. Lee, "Fuzzy r-semiopen sets and fuzzy r-semicontinuous maps," *International Journal of Mathematics and Mathematical Sciences*, (accepted).
- [7] S. J. Lee and E. P. Lee, "Fuzzy r-preopen sets and fuzzy r-precontinuous maps," *Bull. Korean Math Soc.*, vol. 36, no. 1, pp. 91-108, 1999.
- [8] P. M. Pu and Y. M. Liu, "Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence," J. Math. Anal. Appl., vol. 76, pp. 571–599, 1980.
- [9] S. Z. Bai, "Fuzzy strongly semiopen sets and fuzzy strong semicontinuity," *Fuzzy Sets and Systems*, vol. 52, pp. 345–351, 1992.

저 자 소 개

이석종 (Seok Jong Lee)

1989~현재:충북대학교 수학과 교수

1998~현재:한국 퍼지 및 지능시스템학회

논문지 편집위원

1994~현재: 한국 퍼지 및 지능시스템학회

이사

1994~1996 : 충청수학회 이사

관심분야: fuzzy topology, general topology, category theory email: sjlee@chungbuk.ac.kr

이승은 (Seung On Lee)

1981~현재:충북대학교 수학과 교수

관심분야: general topology, frame theory email: solee@chungbuk.ac.kr

박주희 (Ju Hui Park)

2000: 충북대학교 수학과 석사과정 (이학석사) 2001~현재: 연세대학교 수학과 박사과정

관심분야: fuzzy topology email: topjh03@lycos.co.kr