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Abstract

We inverstigate the properties of BL-hommorphisms on BL-algebras. In particular, we find the BL-algebra in duced
by lattice-isomorphism. From these facts, we obtain the generalized Lukasiewicz structure. More-over, we study the

properties of quotient BL-algebras and deductive systems.
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1. Introduction and preliminaries

Ward and Dilworth [7]introduced residuated lattices as
the foundation of the algebraic structures of fuzzy logic.
Hajeck [1]) introduced a Bl-algebra which is a general
tool of fuzzy logic. Recently, Hohle [23] extended the
[uzzy set £ @ X—L where L is a BL-algebra in stead of
an unil interval L

In this paper, we investigate the properties of
BL-homomorphisms on BL-algebras. In particular, we
find the BL-algebra induced by lattice-isomorphism.
From these facts, we can obtain the generalized
Lukasiewicz structure. Moreover, we prove the first
isomorphizm theorem on BL-algebras. We study the
properties  of quotient BL-algebras. We give the
examples ol them. In general, the intersection of
deductive systems is a deductive system. We construct
the smallest deductive system containing the umion of
deductive sysiems.

Definition 1.1 ([1,6]). A lattice (L, <, A,V,®,—,0,1)
is called a residuated lattice if it satisfies the following
conditions © for each x,y,zeL,

(R1) (L,©,1) is a commutative monoid,

(R2) if x=<y, then 2@z<y®z (O is an isolone

operation),

(R3) (Galois correspondence) @ (xOv)< z iff x< y—z.

In a residuated lattice L, x" = (x—0) is called comple—
ment of xe L.

Lemma 1.2 ([6]). In a residuated lattice (L,=<,A,V,
®,—,0,1)we have the following properties © for x,v,z= L,
(1) x=1—=x,
(2) 1=1x—ux,
(3 xOv=zx,y,
4) xDy=<x/NAy,

(5) y<x—y,
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6) 2Qy<x—y,
(7) x=<y iff 1 = x—y,
8) x=y iff 1 =x—y=y—ux,

Definition 1.3 ([1.6]). A residuated lattice (L,<,A,
V,0,—,0,1) is called a BL-algebra if it satisfies the
following conditions : for each x,y, =L,

B zAy=xO(x—~»,

B2) xVy=[E—=n—=yIAL(y—0—x],

(B3) (x—=)V(y—x)=1

Definition 1.4 ([6]). Let L be a BlL-algebra. A subset
D of L is a deductive system of L, ds for short, if it
satisfies the following conditions :

(1) 1eD,

(2) if x,x—veD, then y=D.

Theorem 15. Let L be a Bl-algebra. A nonempty
subset D of L is ds iff it satisfies the following condi-
tions

(1) if @,b=D,then a®b= D,

(2) il a=D and a=<b, then beD.

Proof (=) let a,b=D, Since (aOb<(al®b), by
Galois carrespondence, a<[b—(a®b)]. Since a=10agq,
we have a—[b—(a@bl=1. Since D is a ds,
b—(a® b= D. Thus, (ab=D.

Let ¢=Dand a< b, Since z< b, by Lemma 1.2(7),
a—+b=1e D. Hence b= D,

(=)Since D+ @,ae=<] for each a=D. By (2),
1eb. let a,a—b=D. By (1), a®(a—b)=D.
Since (@—b)<(a—b), we have [(a—d)Dal=bh.
By (2), b= D.

Definition 1.6([6]). Let~be an equivalence relation on
A Letf: A"— A be an m-ary operation on A. We say
that—is a congruence with respect to f if a,~ b; for

each =1, .., mthenf(a;,....an) ~ (b1, ., by).

Theorem 1.7 ([6D). If~is a congruence relation on a
Bl-algebra L. then D= {a= L] a~1}is a ds



Theorem 1.8 ([61). Let L he a BlL-algebra. Let D be a
ds of L. Defne a~ b iff (¢ —5b)O (b—a)= D,
Then~is a congruence relation with respect to—,®, *,
VA,

Theorem 1.9 ([6]). Let D be a ds of a BL-algebra L

Define on L/D which is the set of eguivalence classes
{lal | a= L}, for all a, be L,

la|<|bliff g—~ b= D,
then
(L/D, <,A,Vv,®,—, 100,11

is a BL-algebra where |a|A|b| = |a/bl,

lzl\V18] = |aVbl, 1al@1b] = |a®b]

la|—]b] = la~—bl.
Theorem 1.10 (I6]). Let £, K be two BL-algebras. Let
h ' L — K be a BL-homomorphism. Then, for all
x, yVEL, -

(L ACx™) = h(x) ", A1) =1

(2) if x=<y, then k(x) < h(y),

B) A(x Av)=h(xINR(Y), R(xVy) = k{x)Vh(y),

(4)if Dis a ds of L, then A(D) is a ds of K.

2. BL-homomorphism

Definition 2.1 ([6]). Let 1, K be two BL-algebras. A
map h 1 L — K is called a BL-homomorphism if for all
x, ve L, it satisfies the following conditions:

(1) hlx—y) = b(x)—h{y),

@) R(x@y) = h(x)OR(y), () = 0.

A BL-homomorphism 2L — K is called a BL-isormr-
phism if 4 'is a BL-homomorphism and # is bijective.

Theorem 2.2. Let L, K be two BlL-algebras. f A L —
K is a bijective BL.-homomorphisin, then kA a BL- iso-
morphism.

Proof. We only show that £ 'is a BL-homomorphism.
Pul /Y (y)=x and 7 '(y) =x, for each v, o€ K.
Since fis a BL-homomorphism,

Flx Quy) = A1) Of () = »Ows,
Flay—xy) = flx))—=fxy) = Y1 Va,

If implies %Oy = fl(ylﬁ)yz)and
x—xy = f (v, =+vy). Thus,

f_l(yﬂ@f_](yz) =x1®x2=j_1(y,@y2),
o)=Y (m) = m—=x = =),

Theorem 23. Let(L,A,V,0,1) be a lattice and
(K, =,\,V,Og,—,0,1) be a Bl-algebra. Let
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h: I—K be a laltice-isomorphism (f is
WaxAy) = W@ AR(y) and 7(x\Vy) = RV R()).
two operations as follows:

hijective,
Define

x - y=h""((x) — W),

am -1
Then: xQry=h""(hx) Ox ().

U (L, =,A,V,0.,—,0,1) is a BL-algebra.

(2) A map h: L—K is a BL-isomorphism.
Proof. (1) (A) For each x,v e L, Define x<vy iff
Ny =y Since h: L—K is a lattice-isomorphism, x<y
iff ay=y iff Wx)VE() = h(). Thus % and %' are
order preserving maps.
(R1) (L, @, 1) is a commutative monoid from:

It is trivial that ®; is commutative.

=17 ((x) OxD)
=Y h(x) =x.

(x @ Orz =27 Hh(x) O W(INOL =
=h7 TR (W(x) Ok ) Ok k(2))
=27 (x) Ox (M(3)) Ox k(2))
=17 (%) O (W) Ok k(2)))
=5 ((x) Ox WA R Og k(2)]))
=x QLA Wy Ok h(2)]
=x®z.(y L 2).

(R2) If x=<y, then Alx)<h(y).
Thus (%) Ox k=)< h(y) Ox M2).

From (A), since 4! is oder preserving map,
xQrz=h""hx) Cx M)Zh W) Ok a) =y O, z
(R3) (Galais correspondence): (x O, W<z iff x<v—z.

(x Op W<z iff 271 0x) O k() <z
iff (h(x) O (¥) < h2)
iff h(x) < [h(y) —h(2)]
iff x< B Ry — h(2)]
ilf x=< (v—2z),

(B1) Since A(x) ABy) = h(x) O (h(x)—k(y)),

xAy = k7N h(0) ARTHR())
= 1~ h(x) AI(Y))
= h~ ((x) Og [h(x) = (3D
= k7 Wx) Ok [h(h™ (%) = H)ND
=x O [ [ (%) = n(3)]]
=x O (x—.

)V W) = L (h(x) — k() — h()]

(B2) Since
: ALR(Y) = k() — h(x)],
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Ny =B ) VT B())
= 17 h(x) V A(H)
= b A2 = B3]~ B AR R() — () ]— h(x))
= b7 (AT A — () D — (5))
AR BT TR — R0 — k(x))
= [ (D) —A(3)) =31 A [B7H(B(3) = h(x))— 1]
=[(x—=»—y] A [(y—x)—x].

(B3) Since (A(x) = (M V (W) —h(x) =1,

1 =hr"'(D)
= BN = k(0] V [A() = B(0)])
= 17 ((B() = 1)) VBTN () = )
= (x=y) V (y—x).
Thus, (L,=<,V,A,®.,—,0,1) is a 3L-algebra.
(2) From the definition of two operations (&, and —
and Theorem 2.2, # is a BL-isomorphism.

From the above theorem, we obtain the important
results.

Example 24. Let I=1[0, 1] be an unit interval and
(I, <,min,max,0,1) be a lattice. Define on I binary
operations © and — by

2Oy = max{0,x+y—1},
x—v=min{l,1—x+}.

We have (x © ) © 2=xO (y ® 2 from
(xO»Tz=20 (v © 2)=0,if x+y+z=<2,

OO z=20 (vO 2)=x+y+z—2,if x+y+z>2.

We easily show that (R1) (L,®,1) is a commutative
monoid and (R2) if x=<y, then x @ 2<y ® z (® is an
isotone operation).

(R3) (Galois correspondence): (x O =z iff x=<y— z
from

(x O =z Hf x+y—1==z
iff x<1—y+z
iff x<min{l,1—y+z.

(Bl) xAy=zx O(x—») from:

If x<y, xQGx—==x201=xand xAy=r=x.

If vy, x Olx—»=xO0—x+y =y and xN\y=.
(B2) xVy=I[(x—=y»—=yN[(y—x)—x] from

Ifx=y, [y A[(y—x)—a]=

N[ —y+x)—x]=y.

I x>y [(x=n—=y]Al(y—x)—x]=x,

Similarly, (B3) (x—»V(y—x) = 1.

Then (7, <, min,max,(,—,0,1) is a BL-algebra, called
Lukasiewicz structure.

(1) Define &: I—(, <,min,max,®,—,0,1) by h(x)=2x"
where p>0. Then 7% is a latbce-isomorphism.  From
Theorem 2.3, wWe can obtain the generalized Iukasiewicz
structure as follows:
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x— v =k "(hx)—h(5)
= a7 (min{1,1— B(x) + ()}

= min{l,(l—xj’-l- v 2’}

1
x Ory=h"'"(Wx) QR = (max{0, 2" +y"—1}) *

Then (I, <,A,V,®,—,0,1) is a BL-algebra

and % : L—K is a BL-isormnorphism.

(2) g1 (11,2), min, max,1,2)— (1, <, min, max,®,~,0,1)
by g(x) = logsx. The g is a lattice—isomorphism. From
Theorem 2.3, we can obtain the generalized Lukasiewicz
structure as follows:

x—y =g gl —g(m)
g Y(min{l,1—log yx + log 13})
mzn{z 2]—lug,x+10gg.v}

min 2,—2*}i

I

il

Il

1Onay=g (gl Qg(y))=max{l, 1‘24‘1}

Then ([1.21, =, A,V,®n.2,—,1,2) is a BL-algebra.
(3) Define k& : I—(I, <, min, max,(>,—,0,1) by
A(x) = logs(x+1).
We can obtain the generalized Lukasiewicz stnicture
as follows:

x—y= mm{l, _2xv_:-11 }
_ _
x Oy = max](, PTEY—L +x;— 1 }

Then (1,=,A,V,®,—,0,1) is a BL-algebra.

We prove the first isomorphism theorem on BL-
algebras from the following theorem.

Theorem 2.5. let L,K be two BlL-algebras.
h: L—K be a BL-homomorphism. Then

(DIf Hisa dsof K,then D={as L|#a) ~x1}
is a ds of L.

{2) (The first 1somorphism theorem) K % is surjective
and H={1}, then D={ae L|a)=1}is a ds
of L and the map #%: L/D—K defined by
W | al)=ha) is a BL-isomorphism.

Proof (1) Let a.besD. Then W a),h(b)~yl. Since ~ g
is a congruence relation with respect to the operation ©,
we have {a) @ Wb~ 41 O 1. Since

Wa@b) =) O Wb, a®b~gl thatis aObe D.
Let ¢<b and a= D. From Theorem 1.10(2) and Lemma
1.2(7), wWae)y=<nb implies kla)—#b =1. Since
WMa)~y 1 and W)~y (b)) and ~y IS a congruence
relation with respect to the operation —, we have
1=[Ma)—h(B)]~y [1=1b]. By Lemma 12(1),

Let



W(b) =[1—k(p)]. Thus b= D.
(2) Let h(a)~ gy 1. By Theorem 1.8,

([#a)—1] © [1—Ha)]) = H.
Since H= {1},
([Ha)—1] © [1—=Wa) = 1.

By Lemma 1.2(3,8), #(@) = 1. Thus
D={as L|Ka)=1}.
Let a~p b Then (a—b) © (b—a) = D. It implies

([ =IO [ —Wa)]) =1,
By Lemma 1.2(3,8), % ois well
defined.
Since k: L—K is a BL-homomorphism,

Wa) = h(b). Thus,

7%: L/ID — K is a BL-homomorphism from the fol-
lowing statements:

W xl—=1yl) =0 x—y|)=hiz—y)
= )= h(y) =k x| )=h(| ¥]),
W1zl Olyl) =70 Qy]) = haOy)
= ()OO = h( | x| YO | ¥|),
B0 = h0)=0.

By Theorem 2.2, we only show that % is bijective. Let
#(a) = h(b). From Lemma 1.2(8),

[A(a) = h(B)] = [1W(b)— h(a)] = 1.
It implies
([H(a) = (B]IO[ (B = ha)]) = 1.

Then (a—bO(b—a) = D. Thus, a~p b, that is,

la| = | b|. Hence % is injective. Since % is surjec-
tive, & is surjective.
Example 2.6. Let X be a nonempty set and 2(X) be a
tfamily of all subsets of X. Then (AX),c,N,U.90.X)
is a lattice. For each A,B e P(X), we define the
operations @ and — by

A@B=ANB, A=B=A°B.

It satisfies (R1) and (R2) of Definition 1.1.

We show that ANBCC iff AcCB°UC (Galois
correspondence) from the following statements:

(=) Since ACAUB)IN(BRUB)Y=(ANBUB*

and ANBCC, we have ACBUC.

(&) Since ACB°UC, we have ANBC(B°UC)NB

= CNBCC.
It satisfies (B1),(B2) and (B3) of Definition 1.3.
(BD
AQA-B) =ANA°UB)
=ANBA.
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(132)
[(A=B)—BIN[(B—~A)—~A]
=[(A°UB°UBIN[B UAUA]
=[ANBIUBIN(B NADUA]
=AUB.

(B3)

(A=B)U(B—=A) =[(A*UBU (B UA)]
=AUBHYUMAUB
=X.
Thus, (P(X),<,N,U,©,—,2,X) is a BL-algebra.
Example 2.7. Let X= {x,x:, %3} and Y= {y,m} be
two sets. Define #: P(X)—=P(Y) as follows:

Ko)=0, WMX)=Y,
A{x D) = {n}, alxd) = {3}, 2{xs}) = @,
A{xy, 208) = {vy, vo), Al{xy, %)) = {vd, B{xe, xa}) = {3},
cach

It  satisfies the conditions:  for

A, B= P(X),
MANB) = A NKWB), (AU B =hrAYU KB,

following

A = n(A)°.
Since A=B= A°U B,

WMA—B) = MAUB) = A\ k(B) = h(A)—h(B).
Hence £ A(X)—P(Y) is a BL-homomorphism. From
Theorem 2.5(2), D={A=P(X)| A) = X} = {{x;, xo},
X} is ds. From Theorem 1.8, since

A~B iff [(A—~B)®(B—A)l<D
iff [(A°UBNBUAI=D
iff [(ANBUAUBTeD

We can obtain :
@ ~{x3}, {x1}~{x1, x5}
{g} ~ {2, 23}, X~ {21, 29}

We obtain PX)/D={|o ], [{z} |, [{=}!, [ X|}.

Define 7: A(X) /D—P(Y) by h(|A!|)=h(A). Hence

% is a BL-isomorphism.

Theorem 2.8. Let L,K be two BL-algebras. Let z: L—

K be a BL-homomorphism. Let N, H be ds's of L,K,

respectively.

(1) If NCD where D={aeL|ia)~gzl} is a ds, then
a~y b implies #(a) ~ gy h(b).

(2) ¥ NCD, a map k : L/N—K/H defined by
Tl al)=|Ha) |is a BL-homomorphism.

(3) If N=D and & is surjective, a map #: LIN-~K/H
is a BL-isomorphism.

Progf. (1) Let a~pxnb. From Theorem 1.8, (a—H®
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(b—a)=N. Since (a—dO(b—a)=(a—HeN and
NCD, we have (Ma)—h(D)~4y 1. Since
congruence relation with respect to the operation &,
WMa) ~g Wa) and (la)—=h(b))~y1

~g 18 a

(@) O (@)= (B)] ~ y [ (h(2) O1) = (a)].

Since O a)— k(b)) = a)N\Rb) from (Bl) of
Definition 1.3, (Ma) AWb)) ~ 5 ka). By a similar
method, (RO AN#(@) ~ g #(B). Since (@) NI(B) ~ x5

MOYNR @), then k(a) ~ 5 h(B).
(2) The map % is well defined (rom (1). Since | x—y|

=lxl—=lyl ad [HMo=b»| = 8x]|—
| i(»)| from Theorem 1.9, we have
B xl =) =M |x—y])
= | wx)—=h(y) |
= | nwx) | = | k(y) |

=n(lx)—=n(lyl).
Similarly, 7( x| @ |y 1) =2 1x YO | v1), & 101)
= |0]. Thus, % is BL-homomorphism.

(3) Since & is surjective, % is surjective. We only show
that 7% is injective.
Let 72(x) ~ g k(y). Since
with respect to the operation —,

(h(x) = B() ~ 5 (B(3)— k().
() = B(x)) ~ & (A(x) — h(x))

Since (M) —h(y) =1, (h(x)—4(x)) =1 {rom Lemma
12(2) and ~y is a congruence relation with respect to

~ g 18 a congruence relation

the operation ©,

[ (2(x) = h())OA(y) = ()]~ 5 1.
Thus
(x> O (y—x)=D.

Hence x~p 3.

Example 29. We define X, ¥ and %4 as same in
Example 2.7. Let H= {{}, Y} be a ds. Then

D={Ae KX) | A~y Y} = {{x} Ly a0}, {2y, ), XD
from the following :
{nt~g ¥, {d~n @.
Also, we have
{a}~p {x1, %9}, ~p L1 23~ X
{xol ~ p {xg} ~p {22, %3} ~p @.

It implies P(X)/D={|{x}]. 1 {x} |} and A(Y)/H=
(1w ], [ {y}|}. Then &: P(X)/D—P(Y)/H defined
by W Al)= | WA |is a BL isomorphism.

In general, the intersection of deductive systems is a
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deductive system. But the umion of deductive systems
need not be a deductive system. We construct the
smallest deductive system containing the union of
deductive systems from the following theorem.
Theorem 2.10. Let {D,| =TI} be a family of ds's on a
Bl-algebra L.

(D () ,er Diis a ds

(2) Define a set

D={asL|xOOx,<a, Iu,x.= UD}

=y
Then D is the smallest &5 containing each D,.
Progf. (1) It is easily proved.
(2) Since leD; and 1<1, then 1=D. Let «,(a
—b)e D, We will show that b= D. Since a=D,
there exist x, -, xm= ) o D; such that

$ O Oxnsa

Since (a—beD, there exist v, -y, U =pD, such
that

OOy, = (a—b).
By Galois correspondence, it implies
O Qy,Oaxb.
Since © is isotone,
NOQy,O0x O Ox,=b.

Since D, is closed by the operation ), we have b= D.
Let x;=D, Since x,<zx, we have x;=D. Hence D;CD.
Finally, f \UJ ;o0r D,CH and H is a ds, we show that
DcH Let
such that

aeD. There exist xp,-,x,=J .ar D;

JC]Q-"meé a.

Since x,--,x,=H, by Theorem 15 (1), we have x®
- Ox,=H From Theorem 1.5(2), we have c= H.

Example 2.11. Let X = {x1, x5, x3}. Dy = {{x1, x,}, X} and
Do={{x,, 22}, X} &'s. Then D/\ND,={X} is a ds.
But, Dy\UD; = {{x1, %5}, {x, x5}, X} is not a o5 bacause

{a1, 2y O Lz, x3) = {xp, 2t M {zg, %3} = {20}, & DU Dy,

From Theorem 2.10(2), D= {{xa}, {1, x5}, {x5, x5}, X} is
the smallest & containing D, and D,.
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