Some Properties of BL-Algebras

Jung-mi Ko and Yong-chan Kim

Department of Mathematics, Kangnung National University

Abstract

We inverstigate the properties of BL-hommorphisms on BL-algebras. In particular, we find the BL-algebra in duced by lattice-isomorphism. From these facts, we obtain the generalized Lukasiewicz structure. More-over, we study the properties of quotient BL-algebras and deductive systems.

Key Words: BL-algebras, Quotient BL-algebras, Deductive systems

1. Introduction and preliminaries

Ward and Dilworth [7]introduced residuated lattices as the foundation of the algebraic structures of fuzzy logic. Hájeck [1] introduced a BL-algebra which is a general tool of fuzzy logic. Recently, Höhle [2,3] extended the fuzzy set $f: X \rightarrow L$ where L is a BL-algebra in stead of an unit interval I.

In this paper, we investigate the properties of BL-homomorphisms on BL-algebras. In particular, we find the BL-algebra induced by lattice-isomorphism. From these facts, we can obtain the generalized Lukasiewicz structure. Moreover, we prove the first isomorphism theorem on BL-algebras. We study the properties of quotient BL-algebras. We give the examples of them. In general, the intersection of deductive systems is a deductive system. We construct the smallest deductive system containing the union of deductive systems.

Definition 1.1 ([1,6]). A lattice $(L, \leq, \land, \lor, \odot, \rightarrow, 0, 1)$ is called a residuated lattice if it satisfies the following conditions: for each $x, y, z \in L$.

- (R1) $(L, \odot, 1)$ is a commutative monoid,
- (R2) if $x \le y$, then $x \odot z \le y \odot z$ (\odot is an isotone operation),
- (R3) (Galois correspondence): $(x \odot y) \le z$ iff $x \le y \rightarrow z$.

In a residuated lattice L, $x^* = (x \rightarrow 0)$ is called complement of $x \in L$.

Lemma 1.2 ([6]). In a residuated lattice $(L, \leq, \land, \lor, \odot, \rightarrow, 0, 1)$ we have the following properties: for $x, y, z \in L$,

- $(1) \quad x = 1 \rightarrow x,$
- (2) $1 = x \rightarrow x$,
- $(3) x \odot y \leq x, y,$
- (4) $x \odot y \le x \wedge y$,
- (5) $y \le x \rightarrow y$,

- (6) $x \odot y \le x \rightarrow y$,
- (7) $x \le y$ iff $1 = x \rightarrow y$,
- (8) x = y iff $1 = x \rightarrow y = y \rightarrow x$,

Definition 1.3 ([1.6]). A residuated lattice $(L, \leq, \land, \lor, \odot, \rightarrow, 0, 1)$ is called a *BL-algebra* if it satisfies the following conditions: for each $x, y, \in L$,

- (B1) $x \wedge y = x \odot (x \rightarrow y)$,
- (B2) $x \lor y = [(x \rightarrow y) \rightarrow y] \land [(y \rightarrow x) \rightarrow x],$
- (B3) $(x \rightarrow y) \lor (y \rightarrow x) = 1$

Definition 1.4 ([6]). Let L be a BL-algebra. A subset D of L is a deductive system of L, ds for short, if it satisfies the following conditions:

- (1) $1 \in D$,
- (2) if $x, x \rightarrow y \in D$, then $y \in D$.

Theorem 1.5. Let L be a BL-algebra. A nonempty subset D of L is ds iff it satisfies the following conditions:

- (1) if $a, b \in D$, then $a \odot b \in D$,
- (2) if $a \in D$ and $a \le b$, then $b \in D$.

Proof. (\Rightarrow) Let $a,b\in D$, Since $(a\odot b)\leq (a\odot b)$, by Galois correspondence, $a\leq [b\rightarrow (a\odot b)]$. Since $a=1\odot a$, we have $a\rightarrow [b\rightarrow (a\odot b)]=1$. Since D is a ds, $b\rightarrow (a\odot b)\in D$. Thus, $(a\odot b)\in D$.

Let $a \in D$ and $a \le b$. Since $a \le b$, by Lemma 1.2(7), $a \rightarrow b = 1 \in D$. Hence $b \in D$.

(\Leftarrow)Since $D \neq \emptyset$, $a \leq 1$ for each $a \in D$. By (2), $1 \in D$. Let $a, a \rightarrow b \in D$. By (1), $a \odot (a \rightarrow b) \in D$. Since $(a \rightarrow b) \leq (a \rightarrow b)$, we have $[(a \rightarrow b) \odot a] \leq b$. By (2), $b \in D$.

Definition 1.6([6]). Let \sim be an equivalence relation on A. Let $f: A^m \rightarrow A$ be an m-ary operation on A. We say that \sim is a *congruence* with respect to f if $a_i \sim b_i$ for each i = 1, ..., m, then $f(a_1, ..., a_m) \sim f(b_1, ..., b_m)$.

Theorem 1.7 ([6]). If \neg is a congruence relation on a BL-algebra L, then $D = \{a \in L \mid a \sim 1\}$ is a ds.

접수일자: 2001년 2월 1일 완료일자: 2001년 3월 12일 **Theorem 1.8 ([6]).** Let L be a BL-algebra. Let D be a ds of L. Define $a \sim b$ iff $(a \rightarrow b) \odot (b \rightarrow a) \in D$.

Then \sim is a congruence relation with respect to \rightarrow . \odot . *. \vee, \wedge .

Theorem 1.9 ([6]). Let D be a ds of a BL-algebra L. Define on L/D which is the set of equivalence classes $\{|a| \mid a \in L\}, \text{ for all } a, b \in L,$

$$|a| \le |b|$$
 iff $a \to b \in D$.

then

$$(L/D, \leq, \wedge, \vee, \odot, \rightarrow, |0|, |1|)$$

is a BL-algebra where $|a| \wedge |b| = |a \wedge b|$, $|a| \vee |b| = |a \vee b|, |a| \odot |b| = |a \odot b|$ $|a| \rightarrow |b| = |a \rightarrow b|$.

Theorem 1.10 ([6]). Let L, K be two BL-algebras. Let $h: L \to K$ be a BL-homomorphism. Then, for all $x, y \in L$

- (1) $h(x^*) = h(x)^*, h(1) = 1$
- (2) if $x \le y$, then $h(x) \le h(y)$,
- (3) $h(x \wedge y) = h(x) \wedge h(y)$, $h(x \vee y) = h(x) \vee h(y)$,
- (4) if D is a ds of L, then h(D) is a ds of K.

2. BL-homomorphism

Definition 2.1 ([6]). Let L, K be two BL-algebras. A map $h: L \to K$ is called a *BL-homomorphism* if for all $x, y \in L$, it satisfies the following conditions:

- $(1) h(x \rightarrow y) = h(x) \rightarrow h(y),$
- (2) $h(x \odot y) = h(x) \odot h(y), h(0) = 0.$

A BL-homomorphism $h: L \to K$ is called a BL-isomrphism if h^{-1} is a BL-homomorphism and h is bijective.

Theorem 2.2. Let L, K be two BL-algebras. If $h: L \rightarrow$ K is a bijective BL-homomorphism, then h a BL- iso-

Proof. We only show that f^{-1} is a BL-homomorphism. Put $f^{-1}(y_1) = x_1$ and $f^{-1}(y_2) = x_2$ for each $y_1, y_2 \in K$. Since fis a BL-homomorphism,

$$f(x_1 \odot x_2) = f(x_1) \odot f(x_2) = y_1 \odot y_2,$$

$$f(x_1 \rightarrow x_2) = f(x_1) \rightarrow f(x_2) = y_1 \rightarrow y_2$$

If implies $x_1 \odot x_2 = f^{-1}(y_1 \odot y_2)$ and $x_1 \to x_2 = f^{-1}(y_1 \to y_2)$. Thus,

$$f^{-1}(y_1) \odot f^{-1}(y_2) = x_1 \odot x_2 = f^{-1}(y_1 \odot y_2),$$

$$f^{-1}(y_1) \rightarrow f^{-1}(y_2) = x_1 \rightarrow x_2 = f^{-1}(y_1 \rightarrow y_2).$$

Theorem 2.3. Let $(L, \land, \lor, 0, 1)$ be a lattice $(K, \leq, \land, \lor, \odot_K, \rightarrow, 0, 1)$ be a BL-algebra.

 $h: L \rightarrow K$ be a lattice-isomorphism (h is bijective, $h(x \wedge y) = h(x) \wedge h(y)$ and $h(x \vee y) = h(x) \vee h(y)$. two operations as follows:

$$x \to y = h^{-1}(h(x) \to h(y)),$$

Then:

- $x \odot_L y = h^{-1}(h(x) \odot_K h(y)),$ (1) $(L, \leq, \land, \lor, \bigcirc_L, \rightarrow, 0, 1)$ is a BL-algebra.
- (2) A map $h: L \rightarrow K$ is a BL-isomorphism.

Proof. (1) (A) For each $x, y \in L$, Define $x \le y$ iff $x \lor y = y$. Since $h: L \rightarrow K$ is a lattice-isomorphism, $x \le y$ iff $x \lor y = y$ iff $h(x) \lor h(y) = h(y)$. Thus h and h^{-1} are order preserving maps.

(R1) $(L, \odot_L, 1)$ is a commutative monoid from:

It is trivial that \bigcirc_L is commutative.

$$x \odot_L 1 = h^{-1}(h(x) \odot_K h(1))$$

= $h^{-1}(h(x) \odot_K 1)$
= $h^{-1}(h(x)) = x$.

$$(x \odot_{L} y) \odot_{L} z = [h^{-1}(h(x) \odot_{K} h(y))] \odot_{L} z$$

$$= h^{-1}(h([h^{-1}(h(x) \odot_{K} h(y))]) \odot_{K} h(z))$$

$$= h^{-1}(h(x) \odot_{K} (h(y)) \odot_{K} h(z))$$

$$= h^{-1}(h(x) \odot_{K} (h(y) \odot_{K} h(z)))$$

$$= h^{-1}(h(x) \odot_{K} h([h^{-1}(h(y) \odot_{K} h(z))])$$

$$= x \odot_{L} [h^{-1}(h(y) \odot_{K} h(z))]$$

$$= x \odot_{L} (y \odot_{L} z).$$

(R2) If $x \le y$, then $h(x) \le h(y)$.

Thus $h(x) \odot_K h(z) \le h(y) \odot_K h(z)$.

From (A), since h^{-1} is oder preserving map,

$$x \odot_L z = h^{-1}(h(x) \odot_K h(z)) \le h^{-1}(h(y) \odot_K h(z)) = y \odot_L z$$

(R3) (Galois correspondence): $(x \odot_L y) \le z$ iff $x \le y \to z$.

$$(x \odot_L y) \le z \text{ iff } h^{-1}(h(x) \odot_K h(y) \le z$$

$$\text{iff } (h(x) \odot_K h(y)) \le h(z)$$

$$\text{iff } h(x) \le [h(y) \to h(z)]$$

$$\text{iff } x \le h^{-1}[h(y) \to h(z)]$$

$$\text{iff } x \le (y \to z).$$

(B1) Since $h(x) \wedge h(y) = h(x) \odot_L (h(x) \rightarrow h(y))$,

$$x \wedge y = h^{-1}(h(x)) \wedge h^{-1}(h(y))$$

$$= h^{-1}(h(x) \wedge h(y))$$

$$= h^{-1}(h(x) \odot_{K} [h(x) \to h(y)])$$

$$= h^{-1}(h(x) \odot_{K} [h(h^{-1}(h(x) \to h(y)))])$$

$$= x \odot_{L} [h^{-1}[h(x) \to h(y)]]$$

$$= x \odot_{L} (x \to y).$$

(B2) Since
$$h(x) \lor h(y) = [(h(x) \rightarrow h(y)) \rightarrow h(y)]$$

 $\land [h(y) \rightarrow h(x)) \rightarrow h(x)],$

$$x \vee y = h^{-1}(h(x)) \vee h^{-1}(h(y))$$

$$= h^{-1}(h(x) \vee h(y))$$

$$= h^{-1}([h(x) \to h(y)] \to h(y)) \wedge h^{-1}([h(y) \to h(x)] \to h(x))$$

$$= h^{-1}([h(h^{-1}[h(x) \to h(y)]) \to h(y))$$

$$\wedge h^{-1}(h(h^{-1}[h(y) \to h(x)]) \to h(x))$$

$$= [h^{-1}(h(x) \to h(y)) \to y] \wedge [h^{-1}(h(y) \to h(x)) \to x]$$

$$= [(x \to y) \to y] \wedge [(y \to x) \to x].$$

(B3) Since
$$(h(x) \rightarrow h(y)) \lor (h(y) \rightarrow h(x)) = 1$$
,

$$1 = h^{-1}(1)$$

$$= h^{-1}([h(x) \rightarrow h(y)] \lor [h(y) \rightarrow h(x)])$$

$$= h^{-1}((h(x) \rightarrow h(y))) \lor h^{-1}(h(y) \rightarrow h(x))$$

$$= (x \rightarrow y) \lor (y \rightarrow x).$$

Thus, $(L, \leq, \vee, \wedge, \odot_L, \rightarrow, 0, 1)$ is a BL-algebra.

(2) From the definition of two operations \bigcirc_L and \rightarrow and Theorem 2.2, h is a BL-isomorphism.

From the above theorem, we obtain the important results.

Example 2.4. Let I = [0, 1] be an unit interval and $(I, \leq, min, max, 0, 1)$ be a lattice. Define on I binary operations \odot and \rightarrow by

$$x \odot y = max\{0, x+y-1\},$$

$$x \rightarrow y = min\{1, 1-x+y\}.$$

We have $(x \odot y) \odot z = x \odot (y \odot z)$ from

$$(x \odot y) \odot z = x \odot (y \odot z) = 0$$
, if $x+y+z \le 2$,

$$(x \odot y) \odot z = x \odot (y \odot z) = x + y + z - 2$$
, if $x + y + z > 2$.

We easily show that (R1) $(L, \bigcirc, 1)$ is a commutative monoid and (R2) if $x \le y$, then $x \bigcirc z \le y \bigcirc z$ (\odot is an isotone operation).

(R3) (Galois correspondence): $(x \odot y) \le z$ iff $x \le y \rightarrow z$ from

$$(x \odot y) \le z \text{ iff } x+y-1 \le z$$
$$\text{iff } x \le 1-y+z$$
$$\text{iff } x \le \min\{1, 1-y+z\}.$$

(B1) $x \wedge y = x \odot (x \rightarrow y)$ from:

If $x \le y$, $x \odot (x \to y) = x \odot 1 = x$ and $x \wedge y = x$. If x > y, $x \odot (x \to y) = x \odot (1 - x + y) = y$ and $x \wedge y = y$. (B2) $x \vee y = [(x \to y) \to y] \wedge [(y \to x) \to x]$ from If $x \le y$, $[(x \to y) \to y] \wedge [(y \to x) \to x] = x$

 $y \wedge [(1-y+x) \rightarrow x] = y.$

If x > y, $[(x \rightarrow y) \rightarrow y] \land [(y \rightarrow x) \rightarrow x] = x$.

Similarly, (B3) $(x \rightarrow y) \lor (y \rightarrow x) = 1$.

Then $(I, \leq, min, max, \odot, \rightarrow, 0, 1)$ is a BL-algebra, called Lukasiewicz structure.

(1) Define $h: I \to (I, \leq, min, max, \odot, \to, 0, 1)$ by $h(x) = x^p$ where p > 0. Then h is a lattice-isomorphism. From Theorem 2.3, we can obtain the generalized Lukasiewicz structure as follows:

$$x \to y = h^{-1}(h(x) \to h(y))$$

= $h^{-1}(min\{1, 1 - h(x) + h(y)\})$
= $min\{1, (1 - x^{p} + y^{p})^{\frac{1}{p}}\}$

$$x \odot_I y = h^{-1}(h(x) \odot h(y)) = (max\{0, x^p + y^p - 1\})^{\frac{1}{p}}$$

Then $(I, \leq, \land, \lor, \odot_I, \rightarrow, 0, 1)$ is a BL-algebra

and $h: L \rightarrow K$ is a BL-isomorphism.

(2) $g: ([1,2], min, max, 1, 2) \rightarrow (I, \leq, min, max, \odot, \rightarrow, 0, 1)$ by $g(x) = \log_2 x$. The g is a lattice-isomorphism. From Theorem 2.3, we can obtain the generalized Lukasiewicz structure as follows:

$$x \to y = g^{-1}(g(x) \to g(y))$$

$$= g^{-1}(\min\{1, 1 - \log_2 x + \log_2 y\})$$

$$= \min\{2, 2^{1 - \log_2 x + \log_2 y}\},$$

$$= \min\{2, \frac{2y}{x}\},$$

$$x \odot_{\{1,2\}} y = g^{-1}(g(x) \odot g(y)) = max\{1, \frac{xy}{2}\}.$$

Then $([1,2], \leq, \land, \lor, \odot_{[1,2]}, \rightarrow, 1, 2)$ is a BL-algebra.

(3) Define $k: I \rightarrow (I, \leq, min, max, \odot, \rightarrow, 0, 1)$ by $k(x) = \log_2(x+1)$.

We can obtain the generalized Lukasiewicz structure as follows:

$$x \rightarrow y = \min\left\{1, \frac{2v+1}{x+1}\right\},$$

$$x \odot_{l} y = \max\left\{0, \frac{xy+x+y-1}{2}\right\}.$$

Then $(I, \leq, \land, \lor, \bigcirc_I, \rightarrow, 0, 1)$ is a BL-algebra.

We prove the first isomorphism theorem on BL-algebras from the following theorem.

Theorem 2.5. Let L, K be two BL-algebras. Let $h: L \rightarrow K$ be a BL-homomorphism. Then

- (1) If H is a ds of K, then $D = \{a \in L \mid h(a) \sim_H 1\}$ is a ds of L.
- (2) (The first isomorphism theorem) If h is surjective and $H = \{1\}$, then $D = \{a \in L \mid h(a) = 1\}$ is a ds of L and the map $\overline{h}: L/D \rightarrow K$ defined by $\overline{h}(\mid a\mid) = h(a)$ is a BL-isomorphism.

Proof. (1) Let $a,b \in D$. Then $h(a),h(b)\sim_H 1$. Since \sim_H is a congruence relation with respect to the operation \odot , we have $h(a)\odot h(b)\sim_H 1\odot 1$. Since

 $h(a \odot b) = h(a) \odot h(b)$, $h(a \odot b) \sim_H 1$ that is $a \odot b \in D$. Let $a \leq b$ and $a \in D$. From Theorem 1.10(2) and Lemma 1.2(7), $h(a) \leq h(b)$ implies $h(a) \rightarrow h(b) = 1$. Since $h(a) \sim_H 1$ and $h(b) \sim_H h(b)$ and \sim_H is a congruence relation with respect to the operation \rightarrow , we have $1 = [h(a) \rightarrow h(b)] \sim_H [1 \rightarrow h(b)]$. By Lemma 1.2(1),

 $h(b) = [1 \rightarrow h(b)]$. Thus $b \in D$.

(2) Let $h(a) \sim_H 1$. By Theorem 1.8,

$$([h(a) \rightarrow 1] \odot [1 \rightarrow h(a)]) \in H.$$

Since $H = \{1\}$,

$$(\lceil h(a) \rightarrow 1 \rceil \odot \lceil 1 \rightarrow h(a) \rceil) = 1.$$

By Lemma 1.2(3,8), h(a) = 1. Thus

 $D = \{ a \in L \mid h(a) = 1 \}.$

Let $a \sim_D b$. Then $(a \rightarrow b) \odot (b \rightarrow a) \in D$. It implies

$$([h(a) \rightarrow h(b)] \odot [h(b) \rightarrow h(a)]) = 1.$$

By Lemma 1.2(3,8), h(a) = h(b). Thus, \overline{h} is well defined.

Since $h: L \rightarrow K$ is a BL-homomorphism,

 $\overline{h}: L/D \to K$ is a BL-homomorphism from the following statements:

$$\overline{h}(\mid x \mid \rightarrow \mid y \mid) = \overline{h}(\mid x \rightarrow y \mid) = h(x \rightarrow y)$$

$$= h(x) \rightarrow h(y) = \overline{h}(\mid x \mid) \rightarrow \overline{h}(\mid y \mid),$$

$$\overline{h(\mid x \mid \odot \mid y \mid)} = \overline{h}(\mid x \odot y \mid) = h(x \odot y)$$

$$= h(x) \odot h(y) = \overline{h}(\mid x \mid) \odot \overline{h}(\mid y \mid),$$

$$\overline{h}(\mid 0 \mid) = h(0) = 0.$$

By Theorem 2.2, we only show that \overline{h} is bijective. Let h(a) = h(b). From Lemma 1.2(8),

$$[h(a) \to h(b)] = [h(b) \to h(a)] = 1.$$

It implies

$$([h(a) \rightarrow h(b)] \odot [h(b) \rightarrow h(a)]) = 1.$$

Then $(a \rightarrow b) \odot (b \rightarrow a) \in D$. Thus, $a \sim_D b$, that is, |a| = |b|. Hence \overline{h} is injective. Since h is surjective, \overline{h} is surjective.

Example 2.6. Let X be a nonempty set and P(X) be a family of all subsets of X. Then $(P(X), \subset, \cap, \cup, \emptyset, X)$ is a lattice. For each $A, B \in P(X)$, we define the operations \odot and \rightarrow by

$$A \odot B = A \cap B, \ A \rightarrow B = A^c \cup B.$$

It satisfies (R1) and (R2) of Definition 1.1.

We show that $A \cap B \subseteq C$ iff $A \subseteq B^c \cup C$ (Galois correspondence) from the following statements:

- (⇒) Since $A \subset (A \cup B^c) \cap (B \cup B^c) = (A \cap B) \cup B^c$ and $A \cap B \subset C$, we have $A \subset B^c \cup C$.
- (\Leftarrow) Since $A \subseteq B^c \cup C$, we have $A \cap B \subseteq (B^c \cup C) \cap B$ = $C \cap B \subseteq C$.

It satisfies (B1),(B2) and (B3) of Definition 1.3. (B1)

$$A \odot (A \rightarrow B) = A \cap (A^c \cup B)$$
$$= A \cap B.$$

(B2)

$$[(A \to B) \to B] \cap [(B \to A) \to A]$$

$$= [(A^c \cup B)^c \cup B] \cap [(B^c \cup A)^c \cup A]$$

$$= [(A \cap B^c) \cup B] \cap [(B \cap A^c) \cup A]$$

$$= A \cup B.$$

(B3)

$$(A \rightarrow B) \cup (B \rightarrow A) = [(A^c \cup B) \cup (B^c \cup A)]$$
$$= (A^c \cup B^c) \cup (A \cup B)$$
$$= X.$$

Thus, $(P(X), \subset, \cap, \cup, \odot, \rightarrow, \emptyset, X)$ is a BL-algebra.

Example 2.7. Let $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2\}$ be two sets. Define $h: P(X) \rightarrow P(Y)$ as follows:

$$h(\emptyset) = \emptyset$$
, $h(X) = Y$,
 $h(\{x_1\}) = \{y_1\}$, $h(\{x_2\}) = \{y_2\}$, $h(\{x_3\}) = \emptyset$,

$$h(\lbrace x_1, x_2 \rbrace) = \lbrace y_1, y_2 \rbrace, \ h(\lbrace x_1, x_3 \rbrace) = \lbrace y_1 \rbrace, \ h(\lbrace x_2, x_3 \rbrace) = \lbrace y_2 \rbrace,$$

It satisfies the following conditions: for each $A, B \in P(X)$,

$$h(A \cap B) = h(A) \cap h(B), \ h(A \cup B) = h(A) \cup h(B),$$
$$h(A^c) = h(A)^c.$$

Since $A \rightarrow B = A^c \cup B$,

$$h(A \rightarrow B) = h(A^c \cup B) = h(A)^c \cup h(B) = h(A) \rightarrow h(B).$$

Hence $h: P(X) \rightarrow P(Y)$ is a BL-homomorphism. From Theorem 2.5(2), $D = \{A \in P(X) \mid h(A) = X\} = \{\{x_1, x_2\}, X\}$ is ds. From Theorem 1.8, since

$$A \sim B$$
 iff $[(A \rightarrow B) \odot (B \rightarrow A)] \in D$
iff $[(A^c \cup B) \cap (B^c \cup A)] \in D$
iff $[(A \cap B) \cup (A \cup B)^c] \in D$

We can obtain:

$$\emptyset \sim \{x_3\}, \{x_1\} \sim \{x_1, x_3\}$$

 $\{x_2\} \sim \{x_2, x_3\}, X \sim \{x_1, x_2\}$

We obtain $P(X)/D = \{ \mid \emptyset \mid , \mid \{x_1\} \mid , \mid \{x_2\} \mid , \mid X \mid \}.$ Define $\overline{h}: P(X)/D \rightarrow P(Y)$ by $\overline{h}(\mid A \mid) = h(A)$. Hence \overline{h} is a BL-isomorphism.

Theorem 2.8. Let L,K be two BL-algebras. Let $h: L \rightarrow K$ be a BL-homomorphism. Let N,H be ds's of L,K, respectively.

- (1) If $N \subset D$ where $D = \{a \in L \mid h(a) \sim_H 1\}$ is a ds, then $a \sim_N b$ implies $h(a) \sim_H h(b)$.
- (2) If $N \subset D$, a map $\overline{h} : L/N \rightarrow K/H$ defined by $\overline{h}(|a|) = |h(a)|$ is a BL-homomorphism.
- (3) If N = D and h is surjective, a map $\overline{h}: L/N \rightarrow K/H$ is a BL-isomorphism.

Proof. (1) Let $a \sim_N b$. From Theorem 1.8, $(a \rightarrow b) \odot$

 $(b \rightarrow a) \in N$. Since $(a \rightarrow b) \odot (b \rightarrow a) \le (a \rightarrow b) \in N$ and $N \subset D$, we have $(h(a) \rightarrow h(b)) \sim_H 1$. Since \sim_H is a congruence relation with respect to the operation \odot , $h(a) \sim_H h(a)$ and $(h(a) \rightarrow h(b)) \sim_H 1$

$$[h(a) \odot (h(a) \rightarrow h(b))] \sim_H [(h(a) \odot 1) = h(a)].$$

Since $h(a) \odot (h(a) \rightarrow h(b)) = h(a) \wedge h(b)$ from (B1) of Definition 1.3, $(h(a) \wedge h(b)) \sim_H h(a)$. By a similar method, $(h(b) \wedge h(a)) \sim_H h(b)$. Since $(h(a) \wedge h(b)) \sim_H h(b) \wedge h(a)$, then $h(a) \sim_H h(b)$.

(2) The map \overline{h} is well defined from (1). Since $|x \rightarrow y|$ = $|x| \rightarrow |y|$ and $|h(x) \rightarrow h(y)| = |h(x)| \rightarrow |h(y)|$ from Theorem 1.9, we have

$$\overline{h}(\mid x \mid \rightarrow \mid y \mid) = \overline{h}(\mid x \rightarrow y \mid)
= \mid h(x) \rightarrow h(y) \mid
= \mid h(x) \mid \rightarrow \mid h(y) \mid
= \overline{h}(\mid x \mid) \rightarrow \overline{h}(\mid y \mid).$$

Similarly, $\overline{h}(|x| \odot |y|) = \overline{h}(|x|) \odot \overline{h}(|y|), \overline{h}(|0|)$ = |0|. Thus, \overline{h} is BL-homomorphism.

(3) Since h is surjective, \overline{h} is surjective. We only show that \overline{h} is injective.

Let $h(x) \sim_H h(y)$. Since \sim_H is a congruence relation with respect to the operation \rightarrow ,

$$(h(x) \to h(y)) \sim_H (h(y) \to h(y)).$$
$$(h(y) \to h(x)) \sim_H (h(x) \to h(x))$$

Since $(h(y) \rightarrow h(y)) = 1$, $(h(x) \rightarrow h(x)) = 1$ from Lemma 1.2(2) and \sim_H is a congruence relation with respect to the operation \odot ,

$$[(h(x) \rightarrow h(y)) \odot (h(y) \rightarrow h(x))] \sim_H 1.$$

Thus

$$(x \rightarrow y) \odot (y \rightarrow x) \in D.$$

Hence $x \sim_D y$.

Example 2.9. We define X, Y and h as same in Example 2.7. Let $H = \{\{y_1\}, Y\}$ be a ds. Then

$$D = \{A \in P(X) \mid h(A) \sim_H Y\} = \{\{x_1\}, \{x_1, x_2\}, \{x_1, x_3\}, X\}$$

from the following:

$$\{y_1\} \sim_H Y, \{y_2\} \sim_H \emptyset$$
.

Also, we have

$$\{x_1\} \sim_D \{x_1, x_2\}, \sim_D \{x_1, x_3\} \sim_D X,$$

 $\{x_2\} \sim_D \{x_3\} \sim_D \{x_2, x_3\} \sim_D \emptyset.$

It implies $P(X)/D = \{ |\{x_1\}|, |\{x_2\}| \}$ and $P(Y)/H = \{ |\{y_1\}|, |\{y_2\}| \}$. Then $\overline{h} : P(X)/D \rightarrow P(Y)/H$ defined by $\overline{h}(|A|) = |h(A)|$ is a BL isomorphism.

In general, the intersection of deductive systems is a

deductive system. But the union of deductive systems need not be a deductive system. We construct the smallest deductive system containing the union of deductive systems from the following theorem.

Theorem 2.10. Let $\{D_i \mid i \in I\}$ be a family of ds's on a BL-algebra L.

- (1) $\bigcap_{i \in \Gamma} D_i$ is a ds.
- (2) Define a set

$$D = \{ a \in L \mid x_1 \odot \cdots \odot x_m \le a, \exists x_1, \cdots, x_m \in \bigcup_{i \in r} D_i \}.$$

Then D is the smallest ds containing each D_t . Proof. (1) It is easily proved.

(2) Since $1 \in D_i$ and $1 \le 1$, then $1 \in D$. Let $a, (a \rightarrow b) \in D$. We will show that $b \in D$. Since $a \in D$, there exist $x_1, \dots, x_m \in \bigcup_{i \in I} D_i$ such that

$$x_1 \odot \cdots \odot x_m \le a$$
.

Since $(a \rightarrow b) \in D$, there exist $y_1, \dots y_b \in \bigcup_{t \in \Gamma} D_t$ such that

$$y_1 \odot \cdots \odot y_b \leq (a \rightarrow b)$$
.

By Galois correspondence, it implies

$$y_1 \odot \cdots \odot y_p \odot a \leq b$$
.

Since O is isotone,

$$y_1 \odot \cdots \odot y_p \odot x_1 \odot \cdots \odot x_m \le b.$$

Since D_i is closed by the operation \odot , we have $b \in D$. Let $x_i \in D_i$. Since $x_i \le x_i$, we have $x_i \in D$. Hence $D_i \subset D$. Finally, if $\bigcup_{i \in \Gamma} D_i \subset H$ and H is a ds, we show that $D \subset H$. Let $a \in D$. There exist $x_1, \dots, x_m \in \bigcup_{i \in \Gamma} D_i$ such that

$$x_1 \odot \cdots \odot x_m \le a$$
.

Since $x_1, \dots, x_m \in H$, by Theorem 1.5 (1), we have $x_1 \odot \dots \odot x_m \in H$. From Theorem 1.5(2), we have $a \in H$.

Example 2.11. Let $X = \{x_1, x_2, x_3\}$, $D_1 = \{\{x_1, x_2\}, X\}$ and $D_2 = \{\{x_2, x_3\}, X\}$ ds's. Then $D_1 \cap D_2 = \{X\}$ is a ds. But, $D_1 \cup D_2 = \{\{x_1, x_2\}, \{x_2, x_3\}, X\}$ is not a ds bacause

$$\{x_1, x_2\} \odot \{x_2, x_3\} = \{x_1, x_2\} \cap \{x_2, x_3\} = \{x_2\}, \notin D_1 \cup D_2,$$

From Theorem 2.10(2), $D = \{\{x_2\}, \{x_1, x_2\}, \{x_2, x_3\}, X\}$ is the smallest ds containing D_1 and D_2 .

References

- [1] P.Hájek, Metamathematices of Fuzzey Logic, Kluwer Academic Publishers, Dordrecht (1998).
- [2] U.Höhle, On the fundamentals of fuzzy set theory, J. Math.Anal.Appl. 201 (1996), 786-826.

- [3] U.Höhle and S.E. Rodabaugh, *Mathematics of fuzzy sets*, Kluwer Academic Publishers (1999).
- [4] M. Mizumoto, *Pictorial representations of fuzzy connectives I*, Fuzzy sets and Systems 31 (1989), 217–245.
- [5] E. Turunen, *Algebraic structures in fuzzy logic*, Fuzzy sets and System 52 (1992), 181-188.
- [6] E. Turunen, Mathematics behind fuzzy logic, A springer-Verlag Co., 1999.
- [7] M. Ward and R.P. Dilworth, *Residuated lattices*, Transactions of American Mathematical Society 45(1939), 335–354.
- [8] S. Weber, A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms, Fuzzy sets and Systems 11 (1983), 115-134.
- [9] R.R. Yager, On a general class of fuzzy connectives, Fuzzy sets and Systems 4(1980), 235-242.

저 자 소 개

고정미(Jung-Mi Ko)

1980년 : 연세대학교 수학과(이학사) 1982년 : 연세대학교 대학원 수학과(이학석사) 1988년 : 연세대학교 대학원 수학과(이학박사) 1988~현재 : 강릉대학교 수학과 교수

관심분야 : Fuzzy Logic

김용찬(Yong-Chan Kim)

1982년 : 연세대학교 수학과(이학사) 1984년 : 연세대학교 대학원 수학과(이학석사) 1991년 : 연세대학교 대학원 수학과(이학박사) 1991년~현재 : 강릉대학교 수학과 부교수

관심분야 : Fuzzy Topology