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Stability of TSK-type Time-Delay FLC
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Abstract

A stable TSK-type FLC can be designed by the method of Parallel Distributed Compensation (PDC) [2], but in this
case, solving the LMI problem is not a trivial task. To overcome such a difficulty, a Time-Delay based FLC
(TDFLC) is proposed. TSK-type TDFLC consists of Time-Delay Control (TDC) and Sliding Mode Control (SMC)
schemes, which result in a robust controller based upon an integral sliding surface. Finally, simulation study is

conducted for a mass-spring-damper system.
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1. Introduction

The TSK (Tagaki-Sugeno-Kang) fuzzy model [1] has
been widely used for a stable fuzzy control system [2],
because the linear control theory can be applied in the
design of the stable TSK-type FLC. One of the notable
design methods to stabilize a TSK fuzzy system is to
apply the Parallel Distributed Compensation (PDC)
suggested by Wang et. al [2]. In the system described
by the TSK fuzzy model combined with PDC scheme,
however, it is often difficult to find a positive-definite
matrix that satisfies a set of linear matrix inequalities
simultaneously.

As another approach, the robust control theory {3] has
been presented for the stability of TSK-fuzzy systems.
In this method, the nonlinear time-varying fuzzy system
is considered as a linear time-invariant system with a
norm-hounded model uncertainty: in this case, the LMI
problem embedded in the FPDC becomes a problem of
finding a positive definile solution of an algebraic Riccati
equation that stermns from the defined Lyapunov function.
It is remarked that, since robustness is desirable in
consideration of the model uncertainty, various efforts
have been given for robust stabilization of a TSK fuzzy
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model [6]. There is no assurance, however, that the
algebraic Riccati equation is always solvable. If
unsolvable, the related matrices including the control
gains in all the rules must be changed, which affects the
norm-bounds of uncertainties. As a result, the LMI
problem is indirectly embedded in solving the algebraic
Riccati eguation. Moreover, no analytical method is
known to construct the solvable algebraic Riccati
equation.

For uncertain systems, a TDC (Time-Delay Control)
technique is also known to be successfully applied for
controller design [4]. The TDC algorithm is simple and
requires litlle priori knowledge of the system dynamics.
In this paper, we shall use the TDC scheme for a new
approach, called a TSK-type TDFLC (Time-Delay FLC),
to aveid such difficulties of designing a stable TSK-type
FLC: the LMI problem or the problem of selecting
appropriate interdependent matrices in the algebraic
Riceatl equation. The proposed TSK-type TDFLC can be
designed to overcome disadvantages of the TDC while
ensuring the stability by means of a modified sufficient
condition for stability.

In Section 2, the concept of TDC is brefly reviewed.
In Section 3, we introduce a robust TS5K-type TDFLC
and derive its stability. Finally, in Section 4, some
sirmulations are given to illustrate effectiveness of the
proposed methods.
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2. Time—-Delay Control [4]: Brief Review

Congsider a class of nonlinear plants described by

x (D= fx, D+ b(x, Dult), v()=x(D,

or
01 0 0
, 00 1 0
xH=1 i | x(H+ Az, O+ bz, DulD,
0 0 0 1
0 0 0 0
WD =x,(D, (1

where ye R, u=R, L%, D=1[0,.0,Ax, D] =R" with
Az R"—ReC”, and bz, D=[0,,—, bz D] eR",
with &(x, : R">R=C”, The desired performance is defined
by the response of a given stable linear time-invariant
reference model:

i (D=A 2, (D+ bp¥ (2)

x,=R", r,=R (a reference input), A,=R""
(a canorical Hurwitz matrix), 5,=I[0,--,0,b,]ER".
Let e(d= x,(H—x(d. Then, from (1) and (2), the
error dynamics is written as

e D=A, e+~ 58" Xx D+ 58" bory,
— b D], (3)

where

where

Kz, O=LFLx O+ 0 — Blu(HeR", (4)

and
b=[0,,0,B)"eR"and b"=(2"H 'erRV" 2" is
a pseudoinverse of . Applying the control input

wao(D= B 1~ Ka )+ Anx(D+ bural, (5)

to (3) sets the bracket in (3) to be zero. Here 5°
=(3"H 7 5" =RY™" is a pseudoinverse of 5 ., Under
the assumption that Kx,£ is a continuous function of
its arguments, we can write

K =FHx, t— L)+ &, 6)
and , for small L , we have
Hax H=Kax t—L), €
By using (1) and (4), (7) is rewritten as
K, D= _x(H— bu(D=_x(t— L) — bu(t— L), (8)
Accordingly, combination of (5) and (8) results in the
TDC control input
ug(D= 5" [— x(t— L)) but— L)+ Anx(t—L)
=u,(t— L)+ B [— (t— L)+ A, x(t— L)
+ burul. (9
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For stability of TDC-based control system, recall the
following Lemma [8].

Lermma 1 [4] : Given the system in (1), assume that

there exists a posilive number N such that
165 = 1I<1 for &N, (10)
where is an identity matrix. Then the TDC in (9)

guarantee [} Rs that y(DH—=x,,(9) for sufficiently small

time-delay L and sufficiently large ¢

The MIMO case ( BER™" and BeR" for b and 5,
respectively) can be proved by the result of [8], without
loss of generality, if the number of the inputs is identical
to that of the outputs.

3. Stability of TSK-type TDFLC

Let there be given the TSK fuzzy model whose ith
model is of the following form:

R;: IF XI(ZL) iSM,‘l and, ,al'ld x,,(z‘) 5 Mim

1
THEN.x(H= A x(D+ Bu(1), av

where M; is a fuzzy set, z(H=R”, u(H)<=R, while

0 1 0 0
0 0 1 ] _
Al v i Iler™n, (12)
0 0 0 -1
da ag ags Qin
and _&=1[0,--,0, 5]17eR" are uncertain matrices
with 530 for i=1,-,7 and j=1,--,xn. Given a

pair of (x(2), u(9), the final output of the fuzzy system
is Inferred as follows [14]:

2wz Acx(D+ Falo]
}21 wA{x(1)

=

x(H=

= Zlh7)u(_7£(t))[ A;J(t)-f— __E,u(t)], 13)
where
w0 =TT 1 M), () =D
3 w,(x(8)

For stability of a TSK fuzzy model in (13), the TDC
input in (9) is replaced with

wd = ugt= L)+ B [~ L hulalt— D A,x(t—L)

+ buft—L)+Anz(t— L)+ bur,], (15
where

t=D)= F hla(t= L)L Aex(t—L)

+ liud( i—L)]. (16)



and

s

_b=[0,--,0, 1"eR™ B>0. (17)

Then, Lemma 2 guarantees stability in the same
marmer as Lemma 1 in Section 2.

Lemma 2 [4]: Given the system in (13), assume that
there exists a positive number N such that

|5(x, 0 5 —1I<1 for DN,
where

Kz = 2 hu2(D) B as)

Then, the TDC imput in
W H—xa(D for sufficiently

(15) guarantees that
small time-delay L and

sufficiently large ¢

According to Lemma 2, the error can be made to
converge to zero as the time goes to infinity with & and
a sulficiently small time—delay L being properly selected.
It is noted, howcver, that a large time-delay or a value
of Hx ) 5 ' being almost unity may deteriorate
performance. Accordingly, in order to overcome such

difficulties, a different scheme is proposed to stabilize a
TSK fuzzy model.

Theorem 1: Given the system in (13), assume that

| S hmla0) BT B—11<1, V820, 19
and that the time-delay error is
A43:(a =85 [ Tz 0~ Fu(x, t=L)]
— BB B s A= Ax(D)
= 3 haa(t= DX A~ At~ L)
(2 i 2(0) Bim D)= s (1= L)
— £q2(0], (20)
where
£0(8)= Blnext=L)) Bi= b x(t— L)) ]

Let the sliding surface value and the SMC gain K be
defined as

D= B ~A, [ e(ddd, (22)

where A,, is a Hurwitz matrix of a canonical form, and
K1 54 32 D, 23)

respectively. Then, the proposed TDC combined with
SMC

ug(t) = ua () + u D), (24

TSK 2 AlZh X[ HAH07]2] otEM

asymptotically stabilizes the TSK-type fuzzy model

H)= B bl 2O AxD+ BuD),  (25)
if u(f is defined as
u(D = Ksgn(s(9), (26)
Proof : Define the Lyapunov function
V() =sd/2. 27

The differentiation of (27) with respect to time is given
by

V(D =s(O0 37 (D~ Aneld)]

=5l 27 (—4 2:(z D — BKsgn(s(D))]. (28)

By (23), V(O becomes negative—definite, which means
that the switching condition is always satisfied, hence
the asymptotic stability is guaranteed by a stable
dynamics on the sliding manifold. QED.

Remark 1 : The condition in (19) is derived from
Ksgn(s(0)>] 2 b 2(0) 57 B~ 1Ksgn(s(1),  (29)

considering
a) = s (t= 1)
= B[~ B hla(i— D) Hiat= L)+ B (= D))

+ A,x(D+ bprnt Ksgn(s(D), (30)

in (20). Compared with the condition in (18), it is shown
that | Zlhmi(lf( H) 5" B,—1¢<1 given in Theorem 1
should be satisfied from the initial time ( V/=0).

Remark 2 . When the sliding surface value remains zero
as the time goes to infinite, its derivative

(D= BT~ Aned)], (31)

also becomes zero, which means that the desired error
dynamics of the SMC is equal to that of the TDC.

In terms of the generalized TDC, consider TSK-type
TDFLC as follows:

R,: IFxi(H) is My and, - ,and x,(8 & M,
THEN udd=u,(t— L)+ b [ [—x(i— L)
+Ax(t— L)+ b7, + Ksgn(s(8), (32)

where _§;=1[0,--,0, 5]17eR", b0 for i=1,--,r.
The final output of this fuzzy controller in (32) is
ZOEDWICCINE

N

= X s ug(t— D)+ B (= £t~ L)+ At~ 1)

+ b7y + Ksgn(s())], (33
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where
hk )= —2E (34
2 wd2(9)
Applying (33) (u(f)=u{#) to (25) leads to
EOEDIDWNEOTMEONW e
+ 3 k() B, (35)

and the error dynamics is given by

_e(D=Ane(H+1— B B(D( F(x,D—Anx(b),

— burw— Ba(Duddl, (36)
where
£ D= () A+ L hnla(D) By
— B(D]u: (0, 37
and
BO=(Z hel ) BT (38)

Theorem 2 . Given the system in (13), assume that
| 3 2 b D) (a9 B BT =111, V20, (39)
and tﬁat the time—-delay ertor is

45 d=3R 1 (&~ Bxi-D]

= BB hla()) KD~ 2 ol a(9) Kot D)
+( glhmf(;c(t)) Bi= BD(ufd—u,(t= L)) = &,(H], (40)

where

£/(0= B Utmi(alt= 1)) B hem((t— 1)) B]

7=

u(t—L). 41)
Let the sliding surface be defined as

D= iTeld—A, [ dodd, i,=10,+0117=R",

(42)
and the SMC gain be given by
K()= 3 kol s(KD 2 ho2(8) 571 14 7.
=1 2420, (43)
or
EpBiisd tle=]8"41(x 0. (44)
Then, the proposed TSK-type TDFLC
ulh= B bl x( D ualt= 1)+ b [ (— ali—L)
T An2(t=L)+ b7y + Ksgn(s(D)], (45)
asymptotically stabilizes
)= B hlsON Ax(D+ D). (46)
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Theorem 2 can be easily proved in the same way as in
Theorem 1 and the proof is omitted.

Remark 3 '@ Assuming that there exists a positive
number N such that

| 3 2 Rl D) ho(a() B B 7= 111 for ON, (D)

for sufficiently small time-delay L and sufficiently
large ¢ the TSK-type TDFLC proposed in (45) can also
be changed into

ulD=u(t=L)+ B [— x(t—L))+A,x(t—L)
+ butuml, (48)

for each rule. In this case, stability is guaranteed based
on Lemma 2.

Rermnark 4 © While TDC with SMC uses a constant
value, K (as the upper bound of the error defined in
(23)), the proposed general robust TSK-type TDFLC can
adopt a tme-varying value K(H) in (43). The
time-varying SMC gain K(#) consists of piecewise
constant gain K, in (44) that depends on the local region
of each rule (and |3 74 %.(x, O« also varies depending
on each rule). Therefore, as a state varies, the TSK-type
TDFLC with SMC has an advantage to use less SMC
gain than TDC with SMC. Moreover,
selected, depending on the local region of each rule. This
means that the general robust TSK-type TDFLC can be
known to satisfy the assumption for stability in (39),
more generally and efficiently in terms of the control
input.

Remark 5 : As a continuous approximation of SMC, a
saturation function

_ [ sen(s(D/0) if Is(B]>0
safs(0/ )= T Y L e 20 @

B, can also be

can replace for and have an advantage in attenuating a
chattering problem [16]. In general, the convergence
within a guaranteed precision &, i obtained rather than
a perfect convergence and e, is reduced to be the

smaller value in proportion to @ [17]. In TSK-type
TDFLC, however, a guaranteed precision e, depends on

not @ but a time-delay and the value of 21 ﬁlhcf(zc(t))
=1 7=

haf{ 2(D) B; b [ which is explained in Theorem 3.

Theorem 3 : Given the system in (13), assume that
there exists a positive number N such that

|3 el Dk 5(8) By b 7 1K1 for BN, (50)
and let the sliding surface be defined as
=i el = A, [ e, (5D

Then, the TSK-type TDFLC input



u(= 3 hel o (= L)+ B F (= i(t= D)
+ Apx(t— L)+ byrn) + Ks(D/0], (52)

guarantees that s(H—0 for sufficiently small time-delay
L and sufficiently large &
Proof © The TSK-type TDFLC input is rewritten as

()= B hel el e (1= D+ B (&A= 1)
— A e(t— L)+ K.s(D) b/ @]
= 3 Al O s (1= D)+ b 7 (=)
+K.:s(D B,/ 0]. (53)

We have from (36) and (51)-(52) that
KO=— 1T 2 hula() Ax(D+ § TAu(D+ i} b
— 3 2 D (K(B) B B M= L)

+ BRSO~ Bl al(B) bault-1).  (54)

Let a(a(f) == i [ 3 hn(a(D) AKD+ i TA0D
+ i1 bn?, then we have

(1= L)'= ala(t— L) = 3 hnalt= 1)) Bukt—L). (5)
Applying (55) to (54) results in
s(Hh=(1- Zl Zlhmf(ﬁ(t))hg(ic(t)) 5,57 s(t—L)

= 3 B hl 2D () B, B KA b/ 0

+a(x(8) — alx(t— L)) + &1,
where

(56)

51:( Zlhmz(.x(t_ L)) Ei_ glhmi(l(t)) Biut(t_L)- (57)
In the same mamner as (56), we get
=D = (1= 3 2 a0 (9) B 5 7H3(e=2L)

= 3 B hal (D (D) B B T Kt 1) B/0
+a(x(t—~ L)) — a(x(t—2L)) + &5. (58)

By subtracting (58) [rom (56), we obtain that
(D= t=D)=(1~ 3 s D (a(D) 5:5 7
(s(t—LY— s(t—2L)) + &3, (59)
where |egl<AL and £;>0. Taking the norm on hoth
sides of the above equation leads to
|50 = (=Dl — 2, 2 bl A s (D) B, 5 1)
[s(t— L) — s(1—2L)| + &gl
<ds(t—L)— s(t—2L)| + &

TSK 2@ AjZE X[ed HA[H 072 otEH

<o Ns(t— L) — s(#—2L)| +ey. (60)

where |g < 52L+/5’3af‘"’“. Accordingly, we can say from
<1 that

[s(H— s(i— L) —0 as t—=oo and L—0, 61)
or
s(D—s(t—L) as oo and L—0, (62)
By applying the above result to
H——L0)
== 3 2l a(Dh((0) BB Hs(t= D)
— 3 B () (2(D) B B 7K B/
+ a(x(8) — alx(t— L)) + &, (63)
we conclude that
2 k(D (D) B B K,
s(t— L) ——=51=) (9
0 3, 3 e (Db () ;B
as o0 and I—0, (64)
or
s(H—0 as toco and L0, (65)
QE.D.

To guarantee a stable TSK-type fuzzy system, the
LMI problem should be solved, which iz to find a
common matrix “F satisfying the Lyapunov equations
caused by the rules of the fuzzy system. In addition, the
LMI problem is not easily solvable analytically, which
makes the matter worse for the normal TSK-type fuzzy
system. Also, it is remarked that the LMI problem
becomes very complicated as the number of rules
increases. But, compared with the normal case, the
proposed general robust TSK-type TDFLC shows its
stahility depending on the related assumptions, without
considering a common matrix 'F. Moreover, the
proposed method can also overcome disadvantages which
the normal TDC has: heavy dependence on a time-delay

and a value of Hx,H b ' for performance. Meanwhile,
the replacement of sgu(s(H) with sai(s(f)) can solve a
chattering problem which the general robust TSK-type
TDFLC causes.

4. Simulations

In order to demonstrate the effectiveness of the
proposed method, a mass-spring—damper system is
simiated for TSK-type TDFLC. simulations are given
for the case of the general robust TSK-type TDFLC.
The mass-spring-damper system is described as
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{ollows:
2 (D=x3(D
kz(t)=—0.2x%(t)—le(t)—O.lx ';‘Cl(t)xz(t)_c‘g(f)
a (D + (2.4 —0.5x 30 + 22 (£) cos Gra (D)l 8),

(66)
where
e(H=—0.3sin(108), c:(H=—0.3cosE2,
ca(=—0.2cos(Bh). (67)

For the TSK fuzzy model (i=1,-+,4),

R,: IF Xl(t) is Mli and xg(t) 3 Mg,‘, (68)
THEN x(8) = ( A;+dA) 2D+ ( b+ 4 b)),

where

Al:[ —02 é]’AF[ -02 —1?.35}’

a=[ 7 o 4= res L]

o=[ %) 2= 5] &=[ %) 2= 1 5%

AA1=4A2=AA3=AA4=[ cl(gt) Co%t)],

Adby=4 =4 by=4 _124:{ 6'3(22‘)}’

Mi=1—x %D/2.25, My=x %D/2.25, i=1,2, (69)

and, for TSK-type TDFLC,
_E1= b, _Bz= by, _53= By, _54= by,
Ki=244,K,=4.80, K;=2.18, K,=1.61,
o= 5@ =] 0] an=] O, L] L=lsec,
Here, the SMC gains are calculated based on (43),
assuming that
lx{DI<1.5 for Vi=0 and i=1,2,

[2( DI €10, lu() — ult— L)<10 for V20,

el —x,(t— L)K1 for V=0 i=1,2. (70)

(d) sliding surface

(¢) control input
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(e) TD of x1

N

N
it

(h) ratio of (18)

(g) TD of input
Fig 1. TDFLC

‘ L

{¢) control input (d) sliding surface
Fig 2. Effect of Saturation Function

Fig.l (a)-{d) show that the proposed TKS-type
TDFLC stabilizes the plant under the expected switching
action. On the sliding surface, the eigenvalues of the
error dynamics are decided by A, which are -1 and -2.
In Fig.l (a) and (b), the obtained response is a little bit
different from the desired one because of non-zero initial
sliding surface value. Fig.l (e)-(g) ingist that all the
assumptions in (70) be wvalid In Fig2, SMC is
implemented with a saturation function( @=0.1). As the
asymptotic stability is guaranteed in Theorem 3, it is
noted that the responses obtained in Fig.2 (a) and (b)
converge to zero.

5. Concluding Remarks

Since TDC has characteristics to require little
knowledge of the system dynamics, the proposed
TSK-type TDFLC overcomes disadvantages that a
normal FLC has, such as LMI problem and the



TSK 22 AlZh XA HX|H0f7|2] 2rEH

robustness. To consider the more general case, ~
weakening the sufficient conditions and constraints for X X} a7 [
the proposed method needs to be studied.
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