Relaxation phenomena of electro-optic coefficient in P(VDF-TrFE) copolymers

강유전성 고분자인 P(VDF-TrFE)공중합체의 전기광학계수의 완화현상

  • Published : 2001.06.01

Abstract

Relaxation phenomena of the electro-optic coefficient in ferroelectric copolymer P (VDF- TrFE) were studied. The electro-optic coefficient of copolymers was measured by simple reflection method and the decay curves were fitted by KWW stretched exponentials. The copolymers poled near Tc. Were shown to be more stable than the copolymer poled at lower temperatures. Further, the relaxation time t depending on temperature was found to follow Arrhenius behavior and it was found that the activation energy of 50/50 mol% P (VDF-TrFE) copolymer is larger than that of 72/28 mol% copolymer. As a result, the ferroelectric copolymer with VDF of 50 mol% is was more stable.stable.

강유전성 고분자인 P(VDF-TrFE) 공중합체의 전기광학계수의 완화현상을 고찰하였다. 이 고분자인 전기광학계수는 단순 반사법에 의해 측정하였고 완화현상은 KWW 확장된 지수 함수꼴로 분석하였다. Tc 근방에서 극화시킨 공중합체들은 시간적으로 더 안정적이였고 온도에 의존하는 완화시간$au$를 Arrhenius 형태로 분석하여 50mol%의 TrFe를 가진 공중합체가 28mol%를 가진 공중합체보다 활성화에너지가 더 컸다. 이를 통해 $60^{\circ}C$에서 극화시킨 50mol%의 TrFE를 가진 공중합체가 더안정적임을 알 수 있다.

Keywords

References

  1. Jpn. J. Appl. Phys. v.8 Piezoelectricity of poly(vinylidene fluoride) H. Kawai
  2. Appl. Phys. Lett. v.18 no.5 Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride J. G. Bergman;J. H. McFee;C. R. Crane
  3. J. Appl. Phys. v.42 Pyroelectricity properties polyvinylidene fluoride and its use for infrared detection A. M. Glass;J. H. McFee;J. G. Bergman
  4. The Applications of Ferroelectric Polymers T.T. Wang;J. M. Herbert;A. M. Glass
  5. Appl. Phys. Lett. v.36 Crystalline phase transitions in the copolymer of vinylidene fluoride and trifluoroethylene Y. Tajitsu;A. Chiba;T. Furukawa;M. Data;E. Fukada
  6. J. Polym. Sci.: Part B : Polym. Phys. v.36 Effect of crystalization temperature on the phase transitions of P(VDF/TrFE) copolymers R. Gregorio Jr.;M. M. Botta
  7. Macromolecules v.15 Structural and dielectric investigations on the nature of the transition in a copolymer of vinylidene fluoride and trifluoroethylene (52/48%) G. T. Davis;T. Furukawa;A. J. Lovinger;M. S. Broad-hurst
  8. Organic Molecules for Nonlinear Optics and Photonics F. Kajzar;P.A. Chollet;I. Ledoux;J. Le Moigne;A. Lorin;G. Gadret;J. Messier;F. Kajzar;P. Prasad
  9. Nonlinear Optical Effects and Materials P. Gunter
  10. Appl. Phys. Lett. v.56 no.18 Simple reflection technique for mearsuring the electro-optic coefficient of poled polymers C.C. Teng;H.T.Man
  11. J. Opt. Soc. Am. B v.14 no.5 Single-beam polarization inter-ferometry measurement of the linear electro-optic effect in poled polymer films with a reflection configuration S. H. Han;J. W. Wu
  12. Developments in Crystalline Polymers 1 A. J. Lovinger
  13. Introdution to Nonlinear optical Effects in Molecules and Polymers P.N. Prasad;D. J. Williams
  14. Macromolecules v.30 no.16 Orientational relaxation of transversely aligned nonlinear optical dipole moments to the main backbone in the linear polyurethane N. Tsutsumi;O. Matsumoto;W. Sakai
  15. Jpn. J. Appl. Phys. v.34 no.1 Thermal stability of second-order nonlinearity in poled polymeric films J. Y. Huang;C. L. Liao;W. T. Whang;C. J. Chang
  16. J. Appl. Phys. v.70 no.6 Relaxation phenomena in polymer nonlinear optical materials K. D. Singer;L. A. King
  17. J. Apple. Phys. v.69 no.4 Stability of nonlinear optical characteristics and dielectric relaxations of poled amorphous polymers with main-chain chromophores I. Teraoka;D. Jungbauer;B. Reck;D. Y. Yoon;R. Twieg;C. G. Willson
  18. Chem. Phys. Lett. v.236 The use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers T. Verbiest;D. M. Burland