Fiber-optic macro-bending sensor aided by metal capillary

매크로 벤딩 측정을 위한 금속 모세관 결합 광섬유 센서

  • Published : 2001.08.01

Abstract

A metal capillary splice fiber-optic sensor was fabricated for use as an intensity-based macro-bending sensor. As the radius of curvature due to the macro-bending decreases, the angular misalignment of the fiber ends inside the metal capillary increases, i.e., the coupling efficiency of the fiber splice is reduced. Thus, macro-bending can be detected by the measurement of the reduction of transmitted power. The detectable range of macro-bending. was measured approximately from 20 mm to 85 mm. The center wavelengths of the fiber Bragg gratings are 1543.3 nm and 1549.5 nm, respectively. The maximum bending loss of this sensor was measured about -11.92 dB. Using this metal capillary spliced fiber sensor and fiber Bragg gratings, macro-bending detection has been demonstrated, and it is shown to have potential for multi-point macro-bending sensors. nsors.

금속 모세관을 이용하여 일반적인 단일모드 광섬유를 결합함으로써 매크로 벤딩(macro bending)을 측정할 수 있는 광섬유 센서를 제작하였다. 매크로 벤딩에 의한 곡률 반지름이 감소함에 따라 각도 정렬 오차가 증가하여 투과되는 빛의 에너지가 감소하게 되므로 매크로 벤딩을 측정할 수 있었다. 측정 범위는 곡률 반지름 20mm에서 85mm의 영역이었다. 사용한 광섬유 격자의 중심 파장은 각각 1543.3 nm, 1549.5nm이고 최대 벤딩 손실을 -11.19dB였다. 이 센서와 광섬유 브래그 격자를 이용하여 다중점 측정이 가능함을 보였다.

Keywords

References

  1. J. Lightwave Technol. v.13 The influence of cementitious building material on polymetric surfaces of embedded optical fibers for sensors W.R. Habel;H. Polster
  2. IEICE Trans. Electron. v.E83-C Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection K. Watanabe;K. Tajima;Y. Kubota
  3. Proc. OFS 2000 A self-referencing fiber optic sensor for macro-bending detection immune to temperature and strain perturbations Y. Jeong;S. Baek;B. Lee
  4. Electron. Lett. v.14 Fielo deformation in a curved single-mode fibre W. A. Gambling;H. Matsumura;C. M. Ragdale
  5. Electron. Lett. v.28 Low crosstalk code-division multiplexed interferometric array A. D. Kersey;A. Dandridge;M. A. Davis
  6. Opt. Lett. v.21 Optical fiber long-period grating sensors V. Bhatia;A.M. Vengsarkar
  7. J. Lightwave Technol. v.15 Fiber grating sensors A. D. Kersey;M. A. Davis;H. J. Patrick;M. LeBlanc;K. P. Koo;C. G. Askins;M. A. Putnam;E. J. Friebele
  8. IEEE Photon. Technol. Lett. v.10 Thermal performance of metal-clad fiber Bragg grating sensors G. Lin;L. Wang;C. C. Yang;M. C. Shih;T. J. Chuang
  9. Opt. Fiber Technol v.3 Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube M. Song;S. B. Lee;S. S. Choi;B. Lee
  10. J. Opt. Soc. Am. v.66 Field deformation and loss caused by curvature of optical fiber D. Marcuse
  11. B.S.T. J. v.52 Effect of misalignment on coupling efficiency of single-mode optica fiber butt joints J. S. Cook;W. L. Mammel;R. J. Grow
  12. The Bell Sys.Technol. J. v.56 Loss analysis of single-mode fiber splices D. Marcuse
  13. Proc. Photon. Conf. 2000 A fiber-optic sensor aideo by a metal capillary splice for macro-bending detection S. Baek;Y. Jeong;B. Lee