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ABSTRACT

The linear fractional — quadratic bilevel programming problem, m which the leader's objective func—
tion is a linear fractional function and the follower's ohjective function is a quadratic function, is
studied in this paper. The leader's and the follower’'s variables are related by linear constraints. The
derivations of the optimality conditions are based on Kuhn—Tucker conditions and the duality theory.
[t is also shown that the original linear fractional — quadratic bilevel programming problem can be
solved by solving a standard linear fracticnal program and the optimal solution of the original problem
can be achieved at one of the extreme point of a convex polyhedral formed by the new feasible re—
gion. The algorithm is illustrated with the help of an example.

1. INTRODUCTION

In this papers we consider a bilevel programming problem in which the leader’s
objective function is linear fractional and the follower’s objective function is quad-
ratic.

There are many applications of bilevel programming problem. The problem
can be presented in terms of an economic policy. The government determine cer-
tain goals to be achieved during the planning period and in order to optimize their
achievement, the government can use certain policy measures such as taxes and
subsidies. Once the policy measures are announced the private sector reacts to
government policy measures by optimally forming a plan of action. This private
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sector plan however may not be what the government anticipated. The reaction of
the private sector together with the government’s policy measures will jointly
determine the degree of achievement of the government’s economic goals. The
government's objectives are at least in partial conflict with the private sector
goals. The policy maker faces an optimization problem subject to the optimization
problem for industries and consumers. Hence there are two types of objectives
involved in the BLP. These objectives can be of any type depending upon the
problem of the policy makers and the industries. In this paper we have chosen the
leader’s objective to be linear fractional function and the follower to be a
quadratic function.

In a bilevel programming situation, the higher level decision maker is the
central government or a central authority which sets the policies and the lower
level decision maker is the state government, industrial managers and the like,
who work within the frame work of these policies.

In a bilevel program, the leader optimizes his objective function indepen-
dently and is affected by the reaction of the follower who makes his decision after
the former. Bilevel programming has been developed and studied by many
authors such as Bard [1, 2, 3]. Bialas and Karwan [4], Wang, Wang and Romano-
Redriques {9] and Candler and Townsley [6].

The purpose of this paper 1s to find the optimality conditions and a solution
procedure to solve a linear fractional bilevel programming problem in which the
leader’s objective is linear fractional and the follower's objective 1s quadratic. It is
proved that the given problem can be solved by a linear fractional program. The
techniques used is to replace the follower’s problem by the corresponding Kuhn-
Tucker necessary and sufficient optimality conditions. Alternate representation of
the original problem is made by appending these conditions to the leader’s con-
straint set. It is shown that the optimality selution of the Bilevel Programming
Problem is at an extreme point satisfying complementary condition.

2. MATHEMATICAL FORMULATION

The linear fractional quadratic bilevel programming problem (FQP) is

T T
a x+b y+a

T where y solves
C'x+d y+

(FQP): max F(x,y)=
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max f(x, ) =p x+q"y+(x, 57 Q m
¥ ¥y

subjectto Ax+By< r

where a,c,pe R, b,d,gqeR™, reR"™, @ 18 an (i, +ny)x(n;+n,) real

symmetric matrix with

Q QF
Q — <
b

A, B are mxn, and mxn, matrices respectively. It is assumed that

ch+dTy+ﬁ>O for all (x,)e 8 ={(x,y)| Ax+ By <r}. f can be written as

flx,3) =y Qy — (g + 20,007 y+ (xTQux + pT )

Because x is fixed prior to the maximization of f, the follower's problem is
equivalent to

(P max fi(2,3) =Y @y +(@+2@2)" y
5
subjectto By<r- Ax
Therefore, (FQP) is equivalent to

aTx+bTy+a

T

= where v solves
cla+rd y+ 8

FQP) : max F(x, y) =

max f(x, ) = ¥ @+ (@ +2Q,0)T y
N

subjectto By<r-Ax
Leader’s solution space is given by
P ={xe R" | there exists ¥y such that (x, y) € S}

Follower’s solution space is given by

S(x)={ve R™ |(x,y) =8} For each x € P, let Y(x) denote the set of optimal
solutions to the follower’s problem (P)

Let S ={(x,y)|(x,ye S, veY(x)}, ie., it denotes the set of feasible points to
(FQP).
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Definition 2: A point (x',5") is said to be optimal to (FQP’) if
D (x,y)eS and
i) F(x,y)zF(x, y) V(x,yeS

We assume that &, is negative definite and (FQP) has at least an optimal
solution. The set Y(x) is singleton for each x € P.

3. OPTIMALITY CONDITIONS FOR BILEVEL FRACTIONAL-QUADRATIC
PROGRAMMING PROBLEM

In this section necessary and sufficient optimality conditions for a pair (x, y) to be
an optimal solution of (FQP’) are derived.

Theorem 1: (x, ¥") is an optimal solution to (FQP) if and only if there exists a
vector w' € R™ such that (x", ¥", w") solves the following nonlinear

programming problem.

aTx+b?y+a

R S S o oy
subjectto Ax+ By<r (1)
w?(Ax + By)=w™r (2)
2Q,x+2Qy+q =B w (3)

w=z0 (4)
Proof. It can be easily proved by applying the Kuhn-Tucker conditions to the
follower’s problem
For a given w > 0, define
S{w] ={(x.y) | (x,y) satisfies (1) - (4)}

= the set of points which satisfy Kuhn — Tucker conditions
foragivenw 20

If we define max {F(x, ¥} (x,y) € S[w] = -}, where S[w] = ¢, we can refor-

mulate (P1) as

max max F(x, y) (5)
w {x,¥)eS[w]
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aTx+b"x+a

(Pw) max F(x,y) = Trrdixt g
subjectto Ax+By<r (©)
wi(Ax + By) = w'r (D)
2@x + 2@,y =B'w —g (8)

which is a linear fractional programming problem. For a given w = 0, constraint
(7) can be replaced by w’(Ax + By) = w'r, i.e. —wT{Ax + By) < -wr, as w (Ax+By) <
w’r holds for every w > 0. Dual of (P,) is given by

T TRT
i Uy —Usw) r+uz (B'w-q)+a
D,) : min Ay (g, g, ug) = (1 ~ g0 3 ( Q)
(26 20y ,10y ) ﬁ

subject to  (uy — ugw)TA + 2LL§1Q2 +

T, 5T
(ul—uzw)Tr+u3 (B w—q)+o:CT o7

@
B
(uy — uzw)TB + 2u§‘Ql +
(1, —uzw)Tr +u§1(BTw—q)+adT _pT (10)
bét
Uy, g 20 (11)

where 1, € R™, u, € R and u; e R™.
Suppose that s[w] # ¢ for a w = 0. Because (IFQP) has at least an optimal solu-

tion, for this w, (P,) has an optimal solution. By duality theory, (D,) will also have
an optimal solution [5] and the optimal objective values of (P} and (D,) are equal

Define max — min problem

P2): max min A, (U, ug,us)

x (g ug,uy)
. T T
subject to (1 —uqw)” A+ 213 Qy +

T T, pT
(1) —wqw) r+uz (B w—q)+acT=aT

(12)
B
(u; —qu)TB+2u§Q1 +
_ T T, pT,
() —uqw)' r+ug (B'w Q)+adT=bT 13)

B
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WU, e 20 (14)

wz0 (158)
For a given w = 0, let

Stw} = oay, s, 1) | (g, U, ) satisfying (12)-(15))

and define
min {h, (1, te. g ) | (), us, 1) € Sfw} = —o when S{w}=0¢.

{P’2) can be rewriiten as

max min B (g, s, U 16
w20 (1,0, 6 Sw) w(l 23 3) ( )

Theorem 2 (Weak Duality Theorem): If (x,v,w) and (1,u,,1,,w) are feasible to
the problem (P1) and (P2) respectively, then
Py (uy g, ug) > Fx, v)

Proof. It can easily be proved by multiplying (12) by x and (13) by v and adding
and using the feasibility of (x, ¥, w) and (u,, t,, ¥, w) to (P1) and (P2) re-
spectively.

Theorem 3 (Strong Duality Theorem): Suppose that (x",y", w") and

(g, us, u,; ,w') are feasible solution to (P1) and (P2) respectively.
Then (x,y",w") and (u;, u;, u;, w') are optimal to (P1) and (P2)

respectively if an only if
By (g s ugoug) = f(x,57) (17)
(uy,us0 Y (Ax+ By —ry+uy! (2Q,x+2@,v+q ~BTw')y<0  (18)

v (x,y)eS
Proof. Suppose (x*,y*,w*) and (uf,u;,u;,w*) are optimal for (P1) and (P2) re-
spectively.
If S[w] # ¢ for w = 0, By duality theory [5].

min h, (s, us)= max F(x,
{1, e, e S} w (i, 3) (x,3e8[w] (x.3)
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If S[w] = ¢ for some w = 0, according to convention

min h, (U, g, 3) = max F(x,y)=-w
(1t g 1) € St} Witz Ug) = THAE
Hence
max min A, (g, q) =max max F(x,y) (19)
w20 (by,lg,ly )€ S{w) w=l (x,y)eS[w]

therefore (17) holds.

Since (u;,u;,u;,w*) is feasible to (P2) we have from {12) and (13)

(uy —uqw” )T (Ax+ By —r)+uy’ (20,5 +2Q,y+q - BTw")

N (u; —u;w*)Tr+u;T(BTw* —-gl+a
B

=aTx+bTy+a 20

(ch+dTy+ )

As (x,y)e S and (x*,y*,w*) soles (P1), therefore (x,y ) solves (FQP?).
Using Theorem 1 and (17), we get (18) '
Conversely let (17) and (18) hold. To prove that (x,y,w’) and
(u; u; ,ué’ ,w*) are optimal for (P1) and (P2) respectively.
Now
ax" +bTy ra () —uw )T+t (BT - ) +a
ch*+dT”'+ﬁ - I

aTx b7y v _ (it —ug ) r +uyT (2Q0x +2Qy +q—BTw")
Txtvdfx" v p Tevdy+ g

[(Using feasibility of (u;,us,u5,0 ) and (20)]

>aTJc+bTy+at

2 18
Tx+dTy+p by (18)
Therefore F(x ,y )Yz F(x,y forall (x,y)eS
Le, (x*, y*) solves (FQP" [by definition 2]
ie. (x,y,w") solves (P1) [by Theorem 1]

From (19), optimum objective values of (P1) and (P2) are equal. Since

(x", »",w") solves (P1) and objective function values are equal, therefore,
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(g 1y, ug,w ) is the optimal solution to (P2).
Combining Theorem 1 and Theorem 3 we obtain the following necessary and
sufficient optimality conditions.

Theorem 4: (x .y } is an optimal solution to (FQP") if and only if there exists
w eR™, u eR™, useR' and u; e R™ satisfying w 20,

u, >0 and u; 20 such that
2Q2x* +2Q1y* +q = BTw" (21)
wT(Ax +By -r)=0 (22)

(1t —uqw ) A+ 2u, 76, +

* * * T“ T T *_
(u; —usw Y r+uz (B w q)+acT=aT @3)
B
(uy —ugw )T B+2uT@) +
* _ * ox T N T T *ﬁ
(U —uow ) r+ug (B w q)+adT=bT 24)
B
u, T(Ax" + By ~r)=0 (25)

(“; - u,;w*)T(Ax +By-r)+ u;T(zQQx +26y+d -Bfwy<o0
Y{x,y) e S (26)
Proof. Let (x",y") be optimal to (FQP).

By Theorem 1, there exists a w” € R™ such that (x",y",w") satisfies (2)-(5).
Hence, (x ',y ,w’) satisfies (21) and (22).

Clearly S{w']#¢ and (x,y") is an optimal solution to (P,.)  This implies
that there exists “ € B™ uz € B! 4ng %5 € B™ queh that (g ,us.uy) solves
(D) (8}

Hence (23) and (24) hold. Further, since (x,y') solves (P,.) and
(1 ,1ty,u3) solves (D .) therefore

alx' +07y" va  (u) —ugw)Ty +u T (BTw -+

* * - (27)
Tx" +dTy" + B B
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Multiplying (23) by x", (24) by y" and using (8), (9) and (27), we get
u L {Ax +By -r)=0.

Since (x',7 ,w") solves (P1) and optimal objective function values of (P1)
and (P2} are equal (u; ,u; ,u;,w*) solves (P2) which in turn by Theorem 3 proves
that

(uy —uqw )T (Ax +by — 1) + 137 (2@,x +2Q,y +q - BTw ) <0
V(xS [by (18)]

Therefore (26) holds.

Hence if (x", ¥") solves (FQP’), then there exists w™> 0, u; >0, u; >0 and ug
such that (21)-(26) are true,

Conversely, let (x*, ¥ )eS and there exists w” 2 0, u; =0, u; =0 and u,;
such that (21)-(26) hold, then to prove that (x", y") solves (FQP’).

(21)-(24) imply that (x*,y*,w*) is feasible to (P1) and (u{,u;,ug,w*) is fea-
sible to (P2). Multiplying (23) by x", (24) by y" and adding we get

(u; —u;w*)Ty-;-u;T(BTw* -Q+a alx" +bTy* + o
Jij cTx™ + dTy* + 8
[Using (21), (22), (25)]

This with (26) and Theorem 3 implies that (x",y",w") is optimal to (P1) and
hence (x,¥") is optimal to (FQP) by Theorem 1.

4. ALGORITHM

Denote S'(w)=SN{(x, )] 2Qx +2@Q;y +q = BTw}

(x,yw)|lAx+ By <r
T=<20Qx+20hy+q = BTw

w=0
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aTx+bTy+a+MwT(Ax+By—r)
Tx+dTy+ B

and Foptwy@,y) =

Theorem 5: For any optimal solution (x, ") of problem (FQP’) , there exists a

u,r_: >0 and a w =20 such that (x",y ) is also optimal to the fol-

lowing linear fractional programming problem (FP(H; wy)

aTx +bTy+a+u;w*T(Ax+Byfr)
Tx+dTy+ B

subjectto  (x,7) e S' (W) (29

(28)

max F(u;,w‘)(x,y) =

Proof. Suppose (x,y ) is an optimal solution to (FQP). By Theorem 1, there
exists a w> 0 such that (x",»",w") is an optimal solution to problem
{(P1).Obviously (x",y") € §'(w") and is optimal to problem (P,.). Therefore,

there exists (u;,uy,uy) such that (uf,ug,uy) is optimal to (D) (5] and
Flx ',y )=h,(u,uy,13)

From (19) the optimal objective values of problem (P1) and (P2) are equal as
(x",y .w) and (1, ,u;,ug) are optimal to (P1) and (P2) respectively.
Hence , from (12) and (13) for any (x, ¥) € S, we get

(u; - u;w*)T(Ax + By—r)u;T CQ.x+2Qy+q-— BTw*)

. (u; uu;w*)T +u§r (B™w' - q)+a
B
T

—alx+b v+ (30)

(ch +dTy + )

Since u; (Ax+ By-r)<0 and

* * T
alx" +67y" +a _ (u;—u;w*)Tr+u; (BTw* ~g)t o
Ta"+dTy" + B B

(30) gives

aTx" +67y +a {aTx+bTy+a+u:wT(A.x+By—r)
2 max =

Td wdTy" + g @yes FTx+dly+p
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~ u,;T {2Q,x + 2@,y +q —BTw*}
ch+dTy+ﬁ

> max

alx+b'y+a +u;wT(Ax +By-r)
(x.3)eS"w")

Txvdly+ g

~ u;T{2Q2x +2Qy+q-BTw"}
xvdTy+ B

T T * *T
> max 10; X+0 Y+ a+ug (Ax+By—r)}

eS| cTxvdly+p

T 7 T * T *
ax+b y+a a x +b +a
= may (S YTEL_ BT YD T gy
(e8] | e'x+d y+ B cx +d'y +p
which implies that they should be equal. Therefore
alx" +b7y" +a _ alx" + BTy +usw” (Ax+ By 1) 32)

ch*dTy* +4 eTa” +dT_y* +f5

This shows that (x",»") is optimal to problem FP - vy

Theorem 6: There exists a w’ > 0 and M, > 0 such that for any M > M, any opti-

mal solution of problem FP( Mo -

F(M,w-) : maxF(M,w.)(x,y)
subjectto  (x,y)e S (w’)

ig also an optimal solution to (FQP).

Proof. Let (x',y ) be any optimal solution to (FQP’). By Theorem 5, there exists
aw'>0and u, =0 such that
aTx*+bTy*+a_ aTx+bTy+a+u;w* {Ax+By-r)

* " = max
Tx"+dTy + f neSw) xrdTy+ p Tx+dTy+ B

Since w'(Ax +By-r)<0 for any (x, y) € 8.
Therefore, (30), (31), (32) hold if u; is replaced by a fixed positive number M
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greater than or equal to u;, . Let

E = {(x,y)| (x, ) is an extreme point of $'(w" )}

let v = min wT (AxT+By )
(x.3)eE cx+d v+ ff
aTx+b y+a
U = max . _T——-T—
(eyeSw) e x+d y+ 5

alx +07y v

UQ = * *
cfx" +d¥y +

Because (x, v) € S, V2 0. If v = 0, then w*{Ax + By-r) =0 for all (x,y)e F and
hence for all (x,¥)e S'(w"). Hence F(M,w.)(x, y)=F(x,y) for all (x,y)e S'(w")

and the theorem follows. If v > 0, let M, be the smallest integer greater than u;

v —Us

and

U

v —u
As M>M,>-1+ 2.
v
Therefore, Mv > v, — v,

*T( Ax+ By—r) T T T _* T *

.- +b v+ +b +

Mmmw—> max a_x Jre) ax y T
(x,3)e8(w)

TxvdTy+ p TxvdTy+p| T2 +dTy" +p

aTx*+bTy*+a> max atx+b y+a+ Mw (Ax+ By-r)
T +dTy + g xpesw) Tx+dy+ p

> max
{x.yyeS(w")

atx+ bTy +ot-;—u;W*T (Ax + By -r)
eTx +dTy+B

alx" +bTy" +a

elx" +dTy 4+ p

Therefore, the optimal solution (x,¥) of FP( Moty TMUSE satisfy

aTx+bTy+a Mw" (AT+By-r) _aTx +b7y +a
T— , 3T— T=, 3T= T T
cx+d y+ p cx+d y+ p c’x +d y+ p
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We will now show that w’ (Ax+ By-r)=0.

If w' (Ax+By-r)<0
o’z +b y+a  Mw' (A +By-r)

Tx+dTy+ B Tx+dTy+ p
T T _

- ot By - _
an+bT3'}+a LBl (;fx_x+ Tyf r) [because a4 Ug]
a'x+d” +p U c'x+d y+ 8 U
7 x+b7y+a a5+ 7 +a
— —(v V) Sug = —
c'x+d ¥+ ctx+d ¥+ 4

which contradicts (33). Thus for any optimal solution (x,¥) to FP(M_w-) which

satisfy

w” (Ax+ By—r) =0 is also an optimal solution to (FQP’).

Theorem 7 [9]: Suppose (x, y'} is an optimal solution to (FQP’). There exists an
M and an extreme point (¥,7,iv) of the polyhedral convex set T

such that
Fosm %, = Fyp oy (x7.77)

Proof. For proof Ref. [9].
Algorithm:
Step-1:  Solve the problem

max  F(x,y)
(x, yw)eT

Let (x,v",w’) be its optimal solution.

Step-2:  If the solution so obtained is such that w; (Ax+ By-r); =0 for all
iie., (¥ whHe T(l,ly) go to step 4, otherwise go to step-3.

Step-3: Find the next best solution to the above problem using Murti's
method and go to Step-2.

Step-4: Stop (x*, v") is the optimal solution of the given problem.

Example: Consider the linear fractional quadratic bilevel programming pro-
blem
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8x+3y

FQP): Flx,)=—"—"">—
(FQP) mfx (. 9) bx+2y+1

where y solves

max f(x, yF) = 2x+3y—x* —y*
¥

subject to x+4y<4
x+y<2
x,y20

For a given x, the follower’s problem is equivalent to
max f(x.9)=3y-y"
p

subject to dy<4—x
y<2—x
»=20

(FQP") equivalent to (FQP)1s Z
8x+3y

max F(x,y)=———
x () bx+2y+1

where y solves

FQP) max f(x,y) =3y~ y°

subject to dy<4—x
y<2_—x
xyz20

clearly fi(x,») is a concave function. Problem (P1) equivalent to {GFP’} is

8x+3y
1 max Fx,y)=—"—"—"—
*1) ) = v ay 1
subject to x+td4y<4
x+y<2
wilx+dy-D+w,x+y—-2)=0
W
2¢-1)+2.0x+ 3=1[4,1]
Wy
Le., -2y + 3 =4w, + w,

Xy, Wy, wy=0
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05
{x, y,w) x+4y<4
x+y=<2
Let T = Y
-2y+3 < 4w, +w,
X, y,wy, g =0
Solve the problem
max  F(x,y) = _8x+3y
(x,yu)eT Sx+2y+1
, : Co _ . 16
It’s optimal solutionis x= 2, y =0, w, =2 and w, =0, with F(x,y) =H.
Clearly 1t does not satisfy the condition.
wyx+4dy-—uwltwy{x+y-2)=0,
. . . . 4 2 5
Find the second best solution for this problem. It is x = 3 YT Wi s 3

and w, = 0. It is satisfies the above condition. Therefore, optimal solution for the
fractional — quadratic bilevel programming problem is

4 2 38 22
=, =, F » = d » -
E=oh Y=g (x, ) 57 an flx, ) 5
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