Pt Doping Mechanism of Vanadium Oxide Cathode Film Grown on ITO Glass for Thin Film Battery

  • Kim, Han-Ki (Thin Film Technology Research Center & Battery and Fuel Cell Research Center Korea Institute of Science and Technology(KIST)) ;
  • Seong, Tae-Yeon (Department of Materials Science and Engineering, and Center for Electronic Materials Research, Kwangju Institute of Science and Technology (K-JIST)) ;
  • Jeon, Eun-Jeong (Thin Film Technology Research Center & Battery and Fuel Cell Research Center Korea Institute of Science and Technology(KIST)) ;
  • Cho, Won-Il (Thin Film Technology Research Center & Battery and Fuel Cell Research Center Korea Institute of Science and Technology(KIST)) ;
  • Yoon, Young-Soo (Thin Film Technology Research Center & Battery and Fuel Cell Research Center Korea Institute of Science and Technology(KIST))
  • Published : 2001.01.01

Abstract

An all solid-state thin film battery (TFB) was fabricated by growing, undoped and Pt-doped vanadium oxide cathode film ( $V_2$ $O_{5}$ ) on I $n_2$ $O_3$: Sn coated glass, respectively. Room temperature charge-discharge measurements based on Li/Lipon/ $V_2$ $O_{5}$ full-cell structure with a constant current clearly shows that the Pt-doped $V_2$ $O_{5}$ cathode film is superior, in terms of cyclibility. X-ray diffraction (XRD) results indicate that the Pt doping process induces a more random amorphous structure than an undoped $V_2$ $O_{5}$ film. In addition to its modified structure, the Pt-doped $V_2$ $O_{5}$ film has a smoother surface than the undoped sample. Compared to an undoped $V_2$ $O_{5}$ film, the Pt doped $V_2$ $O_{5}$ cathode film has a higher electron conductivity. We hypothesize that the addition of Pt alters electrochemical performance in a manner of making more random amorphous structure and gives an excess electron by replacing the $V^{+5}$. Possible mechanisms are discussed for the observed Pt doping effect on structural and electrochemical properties of vanadium oxide cathode films, which are grown on I $n_2$ $O_3$: Sn coated glass.

Keywords

References

  1. Electrochemical and Solid-State Letters v.2 no.320 M. Baba;N. Kumagai;H. Kobayashi;O. Nakano;K. Kishidate
  2. J. Electrochem. Soc. v.146 N. J. Dudney;J. B. Bates;R. A. Zuhr;S. Young;J. D. Robertson;H. P. Jun;S. A. Hackney
  3. J. Electrochem. Soc. v.147 J. B. Bates;N. J. Dudney;B. J. Neudecker;F. X. Hart;H. P. Jun;S. A. Hackney
  4. Solid State Ionics v.80 no.261 H. Arai;S. Okada;H. Ohtsuka;M. Ichimura;J. Yamaki
  5. Solid State Ionics v.70;71 no.819 J. B. Bates;G. R. Gruzalski;N. J. Dudney;C. R. Luck;Xiaohua Yu
  6. J. Electrochem. Soc. v.144 Ji-Guang Zhang;Jeanne M. McGraw;John Turner;David Ginley
  7. Solid State Technology v.7 no.59 J. B. Bates;G. R. Gruzalski;N. J. Dudney;C. F. Luck;X. H. Yu;S. D. Jones
  8. J. Electrochem. Soc. v.142 H. K. Park;W. H. Smyrl;M. D. Ward
  9. J. Electrochem. Soc. v.146 F. Coustier;J. Hill;B. Owens;S. Passerini;W. Smyrl
  10. J. Electrochem. Soc. H. K. Kim;E. J. Jeon;Y. W. Ok;T. Y. Seong;W. I. Cho;Y. S. Yoon
  11. Belletin of the Korea Institute of Electrical and Electronic Material Engineering v.13 no.751 H. K. Kim;E. J. Jeon;Y. W. Ok;T. Y. Seong;W. I. Cho;Y. S. Yoon
  12. Mater. Res. Bull. v.16 no.669 P. Aldebert;N. Baffier;N. Gharbi;J. Livage
  13. J. Colloid Interface Sci. v.94 no.75 J. Legendre;J. Livage
  14. V. Mitchell. Appl. Phys. Lett. v.67 no.924 Ning Yu;Todd W. Simpson;Paul C. Mclntyre;Michael Nastasi;lan V. Mitchell
  15. J. Electrochem. Soc. E. J. Jeon;Y. W. Shin;S. C. Nam;W. I. Cho;Y. S. Yoon
  16. Appl. Phys. Lett. v.65 A. Talledo;B. Stjerna;C. G. Granqvist