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Random Permutation Test for Comparison
of Two Survival Curves
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Abstract

There are many situations in which the well-known tests such as log-rank test
and Gehan-Wilcoxon test fail to detect the survival differences. Assuming large
samples, these tests are developed asymptotically normal properties. Thus, they shall
be called asymptotic tests in this paper. Several asymptotic tests sensitive to some
specific types of survival differences have been recently proposed. This paper
compares by simulations the test levels and the powers of the conventional
asymptotic tests and their random permutation versions. Simulation studies show that
the random permutation tests possess competitive powers compared to the
corresponding asymptotic tests, keeping exact test levels even in the small sample
case. It also provides the guidelines for choosing the valid and most powerful test
under the given situation.

Keywords : Survival distributions, Small sample, Versatile test, Permutation test, Monte Carlo
simulation.

1. Introduction

For the comparison of two survival distributions, many test statistics are available for use
such as the log-rank statistics (Mantel, 1966), the generalized Wilcoxon statistic (Gehan, 1965;
Peto and Peto, 1972) and Lee's (1996) versatile statistics, among others. These tests are
developed assuming large samples, so that, for samples of small or moderate size, their
statistical performances such as the test level and power are not well validated. In this study,
through Monte Carlo evaluation for small or moderate size samples, we get to know that type
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1 errors are not controlled for many survival tests for the equality of two survival curves
originated from the asymptotics. In contrast, we see that their random permutation testing
versions show competitively good performance in power evaluation, keeping exact test levels.

Consider a survival experiment in which #n; + n; subjects are randomly divided into two
groups of size n; and s, subsequently receiving one of two treatments, say T (=1) or C
(=2). We denote the survival data by (X;;, 6;;) for ¢ = 1,2 and j=1,-,n;, which are
assumed to be generated by a random censoring mechanism of independent failure and
censoring time pairs (7T ,;, C;;):

X,;;=mn(T;;, C;), 6;=I{T;;<C,}.

The null and alternative hypothesis of this study are

Hy:S,(t)=S,(¢), for all t =20 vs. Hy: S, (¢t) *+ S,(¢t), for some t =0,

where S;(t) = P{T, >t} for i=1,2. Censoring times C;; are assumed to be
generated independently from a common probability distribution, not depending on the
treatment (T or C).

Log-rank test (Mantel, 1966) and the Gehan-Wilcoxon test (Gehan, 1965) have been widely
used in comparing two survival distributions. Log-rank test gives the highest power under the
proportional hazards model, and the Gehan-Wilcoxon test performs better than log-rank test in
detecting early differences in survival distributions. It is crucial to apply the most powerful
test under the given situation, and thus several tests have been proposed for comparing two
survival differences. Fleming, O’Fallon and O’Brien (1980) proposed the modified Kolmogo-
rov-Smirnov test. Their method modifies the classical Kolmogorov-Smirnov test based on the
maximum distance between two empirical distribution functions to allow for the censored data,
and uses the survival function instead of the empirical function. Pepe and Fleming (1989)
proposed the weighted Kaplan-Meier test statistics which is based on the differences between
two survival functions. Kaplan-Meier estimate gets more unstable near the end of the study
due to censoring, and thus the weighted Kaplan-Meier method improves the power by giving
the smaller weight to the late survival differences. Lee (1996) proposed some versatile tests

based on the four individual weighted log-rank statistics of G®7 class in which the weight
functions cover a broad range of types of survival differences. He proposed to use the
maximum or the linear combination of these weighted log-rank statistics, and this test is
especially useful when the investigators are not able to specify in advance the specific type of
the survival differences that may exist.

In this article, we propose the random permutation survival tests for comparing survival
differences. We briefly introduce random permutation versions of the survival tests by taking
a numerical example in section 2. In section 3, we investigate the performances of the above
asymptotic tests and their random permutation versions with small or moderate size samples

such as #n; = ny, = 10 or 20.
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2. Random Permutation Survival Tests

Before turning to Monte Carlo evaluation of several tests under various situations in the
next section, we briefly introduce random permutation versions of the survival tests. Suppose
that we have the following two-group survival data of which the first-group fifteen patients
have low grade tumor while the second-group twenty patients have high grade tumor
(Fleming, O'Fallon and O’Brien, 1980).

Group 1: 28, 89, 175, 195, 309, 377+, 393+, 421+, 447+, 462, 709+, 744+, 770+, 1106+, 1206+.
Group 2! 34, 83, 137, 199, 280, 291, 299+, 300+, 309, 351, 358, 369, 369, 370, 375, 382, 392,
429+, 451, 1119+,

Mantel’s log-rank statistic 7T is computed as 5664 in this case. From a large sample theory,
it can be referred to the chi-squared distribution with single degree of freedom under the null
hypothesis that two distributions are equal, giving the asymptotic p-value 0.018. One may
concern whether (7, #ny) = (15, 20) is the case to apply the large sample theory or not.

Randomization testing approach is different. Under the null hypothesis, the underlying
stochastic mechanisms are equal. Thus, Group 1 observations can be regarded as 15

observations chosen at random out of 35 (=15+20) observations. So, the observed 7 = 5664 is

just one case out of equally likely M= (?{53) = 3,247943,160 cases. In randomization test

theory, T can be referred to the distribution of M such test statistics values Ty, yielding
the p-value = Py{Ty; = T}. Since M is often too large, it is a formidable task to compute
TS for all cases. If the computation of p-value is the main thing, it is sufficient to compute
Ta for a number m of randomly chosen cases, say 1,000, yielding an approximate p-value =

P,{T; = T} which has the estimated error limit =+ 0.014 (= 1.96*V 0.05%0.95/1000) at

95% confidence level for true p-value near 0.05. Random choice of m cases is achieved using

a sub-list of full (#; + 7z,)! permutations, assuming the beginning part of #; observations

to form Group 1 and the remaining part Group 2. We call such randomization test by random
permutation test. Random permutation test, even though it needs intensive computing, does not
require a sampling theory that is often mathematically intractable for the finite samples.

For the above data, 24 cases out of #7 = 1,000 cases yielded 77 greater than or equal to
T = 5664, giving an approximate p-value = P { 75 =5.664 } = 0.020. With = = 10,000,
more reliable approximate p-value can be obtained. In one trial, we get an approximate
p-value = Py g0 {7y =5.664} = 0.019. Therefore, we may reject the null hypothesis at 5%

significance level.
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Such randomization test has its origin at R. A. Fisher (1935), who noted the randomization
can be utilized at the testing stage if it was adopted at the design stage. Even though it has
certain conceptual advantages compared to random sampling approach in biomedical research
(Ludbrook and Dudley, 1998), randomization tests have not been adopted routinely because of
the intensive computation required. But, recent development of computer technology revived
randomization testing methodology and they appeared several monographs on the topic (Good,
1994; Edgington, 1995, Manly, 1997). See Edgington and Gore (1986) for the first application of
randomization tests to the survival data.

3. A Monte Carlo Study For Test Level And Power Evalution

We will consider one null configuration and four alternative configurations for Monte Carlo
generation of survival data as in Lee (1996). Figure 1 presents graphs of the survival
configurations in the following alternative cases:

Config. 0 (Null): Exp(1) both for C and T.
Config. 1 (Proportional Hazards): Exp(1) for T, and Exp(2) for C.
Config. 2 (Early Difference): Exp(3/4) — Exp(3) — Exp(1) for T, and
Exp(3) — Exp(3/4) — Exp(1) for C.
Config. 3 (Late Difference): Exp(2) — Exp(1/2) for T, and Exp(2) — Exp(4) for C.

Config. 4 (Middle Difference): Exp(2) — Exp(1/4) — Exp(4) — Exp(1) for T, and
Exp(2) — Exp(4) — Exp(1/4) — Exp(l) for C.

Also, we consider both no censoring and censoring mechanism, where censoring times C
are generated from Uniform(0,2) distribution. Note that, with censoring, no observations are
greater than 2 and that both failure and censoring times have the same expected value under
Config. 0. The test statistics used for Monte Carlo simulation are log-rank test,
Gehan-Wilcoxon test, modified Kolmogorov-Smirnov test, weighted Kaplan-Meier test and
Lee’s (1996) test based on the maximum and the average (as a linear combination) of the
welghted log-rank test statistics.

For sample sizes, we set #n; = ny = 10,20,50 for typical values of small, moderate and
large samples. 1,000 Monte Carlo samples are generated per situation, and 1,000 random
permutations are selected for the randomization test per sample. Nominal significance level a
is set to 5%. See Table 1 and Table 2 for Monte Carlo evaluation of test levels under Config.
0 and test powers under Config. 1, 2, 3 and 4.

We first focus on the comparison of the asymptotic tests and their random permutation
versions. For Config. 0 (null case) with no censoring in Table 1, we may note that test levels
are not kept well at the target value of 5% with small or moderate size samples for several
asymptotic tests such as log-rank test, average test, maximum, and modified Kolmogorov-Smirmov
test. Hence, direct power comparison between the asymptotic test and its random permutation
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version does not make sense in the case of small or moderate size samples for these four
tests. For instance, under Config. 1, the asymptotic log-rank test with samples of size (20, 20)
has larger power 0.613 than the random permutation log-rank test’s 0.514, but under Config. 0
the former’'s level is 0.083 while the latter’'s level is 0.048. In contrast, all the random
permutation tests automatically keep test levels at the target value.

Both the asymptotic Gehan-Wilcoxon test and the asymptotic weighted Kaplan-Meier test
keep their test levels at the target value well even when z#=10 or 20, but give almost the
same power under the alternative cases as their random permutation versions. For large
samples of size (50, 50), power comparison between asymptotic test and random permutation
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Figure 1. Survival configuration for the alternative cases



142 Mi Kyng Kim, Jae Won Lee and Myung Hoe Huh

Table 1. Monte Carlo evaluation of test levels and test powers
when there is no censoring.”’

Test TR . . . . .
statistic Samples | Type Config. 0| Config. 1|Config. 2| Config. 3| Config. 4

0. 10 A 0097 | 0435 | 019 | 0240 | 0126

Log-rank : R 0053 | 0285 | 0120 | 0124 | 0075
0. 2 A 0083 | 0613 | 0220 | 0405 | 0101

: R 0048 | 0514 | 0162 | 0288 | 0070

0. 50 A 0060 | 0940 | 0405 | 0761 0.103

: R 0047 | 0921 0362 | 0723 | 0097

0. 10 A 0055 | 0302 | 0178 | 0095 | 0090

Gehan- : R 0049 | 0265 | 0156 | 008 | 0077
Wilcoxon 20, %0 A 0059 | 0489 | 0309 | 0116 | 0085
: R 0057 | 0467 | 0298 | 0111 0.080

0. 50 A 0044 | 0856 | 0689 | 0206 | 0122

: R 0043 | 0853 | 0684 | 0200 | 0128

0. 10 A 0072 | 0437 | 0186 | 0294 | 0083

Average : R 0054 | 0422 | 0163 | 0261 | 0.105
20, 20 A 0046 | 0479 | 0210 | 0488 | 0.100

: R 0046 | 0638 | 0219 | 0489 | 0102

0. 50 A 0034 | 0044 | 0395 | 0824 | 0124

' R 0046 | 0962 | 0469 | 0867 | 0159

0. 10 A 0093 | 0484 | 0194 | 0418 | 0152

Maximum ' R 0058 | 0368 | 0136 | 0351 0.122
20, % A 0066 | 0648 | 0293 | 0816 | 0114

' R 0047 | 0579 | 0210 | 0758 | 0083

0. 50 A 0046 | 0936 | 0628 | 0997 | 0198

: R 0043 | 0932 | 0608 | 0995 | 0.181

0. 10 A 0071 0208 | 0197 | 0218 | 0125

Modified ' R 0053 | 0246 | 0148 | 0188 | 0098
K-S 20, 2 A 0057 | 0419 | 0309 | 0372 | 0152
: R 0059 | 0410 | 0310 | 0377 | 0142

0. 50 A 0044 | 0812 | 0745 | 0927 | 0375

: R 0045 | 0821 0758 | 0929 | 0398

0. 10 A 0050 | 0249 | 0267 | 0072 | 0188

Weighted : R 0046 | 0234 | 0263 | 0070 | 0182
K-M 20, 20 A 0052 | 0427 | 0429 | 0103 | 0315
: R 0052 | 0419 | 0418 | 0103 | 0307

0. 50 A 0045 | 0832 | 085 | 0158 | 0621

: R 0044 | 0827 | 085 | 0157 | 0614

(*) Based on 1,000 Monte Carlo replications. Error limits are =+ 0.014 with 95%
confidence under Config. 0.
(**) Test type ‘A’ is the asymptotic test. Test type 'R

’

is the random permutation test.
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Table 2. Monte Carlo evaluation of test levels and test powers when
observations are censored by Uniform(0,2) distribution."”’

Test () . . . . .
statistic Samples | Type Config. 0|Config. 1|Config. 2|Config. 3| Config. 4

1010 A 00069 | 0262 | 0182 | 0161 | 0139

Log-rank ’ R 0.043 0.194 0.122 0.108 0.084
20, % A 0052 | 0462 | 0237 | 0304 | 0134

: R 0043 | 0411 | 01% | 0204 | 0105

0. 50 A 0060 | 0793 | 0415 | 0635 | 0.197

: R 0055 | 0781 | 0375 | 0625 | 0114

0 10 A 0046 | 0184 | 0181 | 0071 | 0.093

Gehan~ ' R 0047 | 0171 | 0156 | 0063 | 007
Wilcoxon 20, 20 A 0048 | 0355 | 0206 | 0109 | 0098
: R 0049 | 0348 | 0203 | 0064 | 0094

0. 5 A 0057 | 0696 | 0632 | 0159 | 0128

: R 0060 | 0686 | 0625 | 0156 | 0136

0. 10 A 0053 | 0202 | 0174 | 0231 | 0145

Average ’ R 0.058 0.299 0.165 0.228 0.140
2. %0 A 0035 | 0480 | 0214 | 0416 | 0.151

' R 0046 | 0509 | 0238 | 0459 | 0.181

0. 5 A 0038 | 0815 | 0360 | 0775 | 0222

: R 0047 | 0862 | 0307 | 0666 | 0311

010 A 0030 | 0240 | 0160 | 0333 | 0161

Maximum : R 0047 | 0269 | 0153 | 0301 | 0148
20, %0 A 0029 | 0425 | 0269 | 0675 | 0173

: R 0040 | 0446 | 0282 | 0667 | 0198

5. 50 A 0037 | 0778 | 0568 | 0974 | 0259

' R 0049 | 0816 | 0628 | 0892 | 0297

0. 10 A 0034 | 0154 | 018 | 0151 | 0115

Modified * R 0035 | 0161 | 0153 | 0138 | 00%
K-S 0. % A 0048 | 0359 | 0333 | 0369 | 0173
: R 0048 | 0357 | 0364 | 0350 | 0173

5. 50 A 0046 | 0704 | 0714 | 0846 | 0353

' R 0050 | 0702 | o711 | 0849 | 0358

0. 10 A 0043 | 0203 | 0308 | 0062 | 0135

Weighted : R 0040 | 0194 | 0200 | 0057 | 0124
K-M 0. % A 0051 | 0359 | 0552 | 0064 | 0206
' R 0051 | 0358 | 0541 | 0064 | 0197

50. 50 A 0060 | 0718 | 0650 | 0086 | 0305

: R 0059 | 0717 | 0659 | 008 | 0300

(*) Based on 1,000 Monte Carlo replications. Error limits are

confidence under Config. 0.

(*x) Test type ‘A’ is the asymptotic test. Test type 'R

’

is the random permutation test.

* 0.014 with 95%
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test is fair since their test levels are similar. By looking up Table 1 for Config. 1, 2, 3 and 4,
we can find that the power loss of random permutation test compared to asymptotic test is
negligible. For instance, under Config. 1, the asymptotic log-rank test with samples of size
(50, 50) has the power 0.940, while the random permutation log-rank test’s power is 0.921. In
Table 2 for the censoring case, we observe that the test levels of the above asymptotic tests
are kept better than no censoring cases in small or moderate size samples. We also observe
there is almost no difference in power between the asymptotic test and its random
permutation version. Power comparison between asymptotic test and random permutation test
in the case of large samples of size (50, 50) leads to the similar conclusion to that for no
censoring case.

Now we examine the behavior of the above test statistics for each configuration of survival
distributions. Since each of the above asymptotic tests and its random permutation version
have almost the same power under the given alternative configuration, we only compare the
powers among the random permutation tests. For Config. 1 (proportional hazards case), the
random permutation version of the log-rank test, the average test and the maximum test give
higher power than other tests. Especially in small or moderate size samples, random
permutation version of the average test and the maximum test gives higher power than that
of log~rank test. For Config. 2 (early difference case) the random permutation version of the
modified Kolmogorov-Smirmov test and the weighted Kaplan-Meier test give the highest
power, and that of the Gehan-Wilcoxon test and the maximum test also give good power. In
small or moderate samples, the random permutation version of the weighted Kaplan-Meier
method gives higher power than that of the modified Kolmogorov-Smirnov test. For Config. 3
(late difference case) in large sample case (#=50), the random permutation version of the
maximum test and the modified Kolmogorov-Smirnov test gives the highest power and that
of the average test also give good power. In the case of small or moderate size samples
(n=10 or 20), however, the power of the modified Kolmogorov-Smirnov test decreases
rapidly compared to other tests and is lower than that of the average test. Finally, for Config.
4 (middle difference case) with no censoring in Table 1, the random permutation version of
the weighted Kaplan-Meier test and the modified Kolmogorov-Smirnov test gives the highest
and the second highest power, respectively. However, the censoring naturally lowers the
power of these two tests significantly compared to the other tests, and there is almost no
difference among the random permutation versions of the Gehan-Wilcoxon test, average test,
maximum test and the weighted Kaplan-Meier test.

4. Concluding Remarks
As observed by Ludbrook and Dudley (1998), in most biomedical experiments, subjects are

randomly assigned to treatments, rather than randomly sampled from populations. Hence,
randomization tests or random permutation tests have a strong merit, compared to
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conventional asymptotic tests. As applied to two-group survival data in particular, random
permutation tests possess competitive powers compared to asymptotic tests, keeping the
significance level exact, with samples of all sizes.

Log-rank test and Gehan-Wilcoxon test have been widely used in comparing two survival
distributions, but there are many situations in which these heavily used tests fail to detect
survival differences successfully. Several asymptotic tests have been recently proposed for
comparing two survival differences, and the properties of these recent asymptotic tests and
their random permutation versions are investigated by simulations in this paper. Simulation
studies provide some insights into these tests across several types of survival differences and
degree of censorship.

References

[1] Edgington, E. S. (1980). Randomization Tests, Dekker, New York.

[2] Edgington, E. S. and Gore, A. P. (1986). Randomization Tests for Censored Survival
distribution, Biometrical Journal, vol. 6, 673-681.

[3] Fisher, R. A. (1935). Design of Experiments, Edinburgh, Oliver and Boyd.

(4] Fleming, T. R., O'Fallon, J. R. and O’Brien, P. C. (1980). Modified Kolmogorov-Smirnov
Test Procedures with Application to Arbitrarily Right-Censored Data, Biometrics,
vol. 36, 607-625.

[5] Gehan, E. A. (1963). A generalized Wilcoxon test for comparing Arbitrarily singly-censored
samples, Biometrika, vol. 52, 203-223.

[6] Good, P. (1993). Permutation Tests, Springer-Verlag, New-York.

[7] Lee, J. W. (1996). Some Versatile Tests Based on the Simultaneous Use of Weighted
Log-Rank Statistics, Biometrics, vol. 52, 468-472.

{8] Ludbrook, J. and Dudley, H. (1998). Why Permutation Tests are Superior to t and F Tests
in Biomedical Research, The American Statistician, vol. 52, 127-132.

(81 Manly, B. F. J. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology,
2nd ed., Chapman & Hall, London.

[10] Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising
in its consideration, Cancer Chemotheraphy Report, vol. 50, 163-170.

[11] Pepe, M. S. and Fleming, T. R. (1989). Weighted Kaplan-Meier Statistics: A Class of
Distance Tests for Censored Survival Data, Biometrics, vol. 45, 497-507.

[12] Peto, R. and Peto, J. (1972). Asymptotically efficient rank invariant procedures (with
discussion), Cancer Chemotherapy Report, vol. 50, 163-170.



