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A Study on Goodness-of-fit Test for Density
with Unknown Parameters?l)

Changkon Hong?2) and Minyoung Lee3)

Abstract

When one fits a parametric density function to a data set, it is usually advisable to
test the goodness of the postulated model. In this paper we study the nonparametric
tests for testing the null hypothesis against general alternatives, when the null
hypothesis specifies the density function up to unknown parameters. We modify the
test statistic which was proposed by the first author and his colleagues. Asymptotic
distribution of the modified statistic is derived and its performance is compared with
some other tests through simulation.

Keywords : goodness-of-fit test; kernel density estimation; composite null hypothesis; power

comparison.

1. Introduction

Consider a random sample Xi,---,X, from a population with unknown distribution function

F(x). It is often necessary to test hypothesis about F(x) of the form
Hy: F(x)e &,

where X, is a specified family of distribution functions. The well-known goodness-of-fit tests
against general alternatives are usually based on empirical distribution function (EDF), which
include Kolmogorov-Smirnov test, Cramér-von Mises test and Anderson-Darling test for the
continuous ungrouped data. For the discrete or grouped data, likelihood ratio or Pearson xz
provides reasonably good tests. In regression problems, lots of goodness-of-fit test procedures
based on the nonparametric estimates of the regression function have been studied by many

authors. See Eubank and Hart(1992), Eubank and Spiegelman(1990) and Cox et al.(1988). In
density estimation problem, however, few studies have been done on test procedures based on
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the nonparametric density estimates. Kim ef al.(1997) proposed as a test statistic the squared

L*-distance between nonparametric density estimates and the null density when the null
density is completely specified. More specifically, they suggested a test statistic

To= [( 7400 — (0 wl(dx,

where w(x) is a weight function, f,(x) is a completely specified null density and 7, (%) is

a kernel density estimate given by
.?h(x) =n -1 gKh(x"Xi).

Here K,(-)=K(+/h)/k , K is called the kernel function, and h is called the smoothing

parameter. In many practical situations, however, the functional form of the null density is
specified up to unknown parameter, which must be estimated from the data. In this paper,

we study the behavior of the test statistic 7, with estimate D of 6. In Section 2, the
asymptotic distribution of 7, is to be studied. Some simulation results are given in Section 3.

And Section 4 gives the concluding remarks.

2. Modification of L?-Distance Statistic and Its Asymptotic Distribution

There are two types of goodness—of-fit tests; omnibus tests and directional tests.
‘Omnibus tests’ are designed to be effective against wide classes of alternatives to the null.
On the other hand, ‘directional tests’ are effective at detecting certain type of departures
from the null In particular, Kolmogorov-Smirnov test, Cramér-von Mises test and

Anderson-Darling test are ‘omnibus tests’ . The test statistic 7, suggested by Kim et

al(1997) is also an omnibus test statisticc. Kim et al (1997) compared the powers of the
above four omnibus tests when the null distribution is completely known.

The empirical distribution function(EDF) for the sample Xj,:-, X, denoted by F,(x) is

defined as

Number of X,/ s<x
n

= —}1" Z‘I(—w,x](xi)y

where I4(x) is an indicator function of set A. When the null distribution function Fy(x) is

F(x) =

completely specified, the well known ‘omnibus tests’ based on EDF are :
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The Kolmogorov-Smirnov statistic :
Dn= sup, |Fn(X)“F0(JC)I.
The Cramér-von Mises statistic :

Wi=n[ [F,(x)~ Fy(012dFy(x).

The Anderson-Darling statistic :

a2= nfw [F,(x) = Fy(0)]?

Fo(o) 1= Fy (0] o)

The above three test statistics are all distribution-free in asymptotic sense and the
percentage points are generally known (Lawless(1982)). When the null distribution function has
an unknown parameter, the null hypothesis can be expressed as

Hy : F(x)e{F4x); 02}, 2.1)

and the above test statistics can be modified by replacing Fy(x) with F z(x). Here Dis a

reasonable estimate of &. For some special distributions, the exact percentage points of these
modified statistics have been studied by some authors. (See Durbin(1975), Margolin and
Maurer(1976)). Stephens(1974) gives the percentage points estimated by the Monte Carlo
methods. Similarly, when the null hypothesis specifies only the functional form of the ‘densit
y’ , it can be expressed as

Hy ; Ax)e {fo(x); =2}, (2.2)

where {fy(x;0); 8=}, is a parametric family of densities. To test (2.2), we suggest a

natural modification of Kim et al.(1997) statistic, which is given by
T.= [ { T~ filx OYu(xdx, 2.3)

where @ is MLE of 6. The null hypothesis is to be rejected for large values of T, In
the remaining of this section, we will derive the asymptotic distribution of T, under Hj.

We need some assumptions on null density f;(x6), kernel K, and weight function w.

(Al) £ is an open interval.

(A2) For each 68, the derivatives

2 3
—88—6 log fo(x; ), —(—;20—2- log fy(x;6), and —?98.6_3— log fo(x;0) exist for all x.
(A3) For each 6,8, there exist functions H,(x), Hy(x), Hs(x) (possibly depending on

8y) such that for 8 in a neighborhood N(8;) of 6, the relations holds
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3

2
& MO, 1= i OISH(0), |- log (s O)l< Hy(),

with [ Hy(xdx¢oo, [Hymdi<oo, [Hix)uw(ndicoo,
[ H(x0) w(x)dx¢oo and Ef Hy(X)]< o0, for G=N(p).

(A4) For each f=4£2,
0<I(§)< o,

where I(§) = Eo( (% log fo(X; 6))2) is the Fisher Information.

(AD) fo(x 6) and ‘% fo{x% ) are uniformly continuous in X.
(K) The kernel function K is bounded and nonnegative, such that
[K(@dze=1, [ 2K(2)dz=0, and [ 2*K(2)dz( 0.

(W) The weight function w(x) is bounded

Remark : assumptions (Al) ~ (A4) guarantee the MLE D of 6 (under the null hypothesis)
satisfies

(@) 8,~,, 0 mn—oo (strong consistency),

M) Vu(9—6) —,NO, I8 ~) (asymptotic normality)
(For the proof, see Serfling(1980) pp.144-145).

Let 6, be the true value of §, then T, can be decomposed as
Ty= Tt Tt 2T 30+ 2T 4+ 2T 55t [{E Fuw — fol 00) Vw2,

where

T = [( - E F)'uw(xdx,

To = [(i(x60)— folzs Bl x)d,

Ty = [( 70— E },(0) (E }u— folx 6wk,
Tin = [CH(0—E () (ol 60) — il Bwlx)dx,
Ts, = [(E Fi=filx 000l 60) — fols BN wl)dk.

Note that T, is related to the Kim et al.(1997) test statistic, say 7{3, , In such a way that
T,= T+ Ty, + 2T 4 +2Ts,
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By the Taylor’'s theorem,
To = [(f(x )= fi(x 0)) w(2)dx

= (2- 600" [(Z5 /om0 ) w2k,
T = [( 50— E B () (50— (fy (x B)ulx)dr
= (6= ) [( (0~ E ()5 filxw ) ulx)dx

+ 3= B [ - B () g (w6 ul)de

for some random quantities @, and 6%, which are on the line segment between 6, and 3,

ie, 0., 8°=(8,, 9). Using the above expression, we can prove the following theorem. The

proof of the theorem is given in the Appendix.

Theorem 1. Assume that /y(x; ;) is the true density and A—(, nh—oc as n—oco, Then
under the assumptions (Al) ~ (A4),
() Ton = Oyn™h).

(i) T4y = Oy(n7h).

Before we state the main theorem, we define some quantities which will
be used in the theorem. Let

n'2h "t if whP—oo
a, = { nk'* if ah’—
20 i akP—d (0),
by = () 7} [ folw ) w(Ddx [ B(2)dz+ [(E 7, (x) = £yl 6)) i x)d,
dg = fuzK(u)du,
v = [ (5 6 w(x) o5 6)dx— ([ (fy (5 B folx 60))?,
vy = ffo(x, ﬁo)zw(x)dxf(fK(Z)K(Z'f' wdz)’du,

v = ([(Z5 f(x00) f3 (5 0)ux)a)*N6p) ™.

Now we state and prove the main theorem.

Theorem 2. Assume that fy(x;6,) is the true density and A—(, nk—o0 as n—o°. Then
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under the assumptions (Al) ~{(A4), (K) and (W),

o Z if nh’—oo
a(T,=b,) —pl wZ if nh°—0
032 if mh’—A (F0),

where Z~N(0,1) and

Ug = 2vy,
& = A"+ ).

(Proof) T,, T3, can be expressed as

Tin = [(Gn) ™ ZE(Gx— X)) = () ™ 23 EK((x— X)/ W) Pl Dl
= () 7 3 (AL (5 X)) w0 de+ 200k "2 . HAX:, X0,

Ton = (ah) "' 3120

where

A (u,x) = K((u—x)/h)— EK((u—X))/h),
H(x,y) = fAn(u,x)An(u,y)w(u)du,

Zu = [ALx X)E 740~ fils 6)w(x)dx.
And there exists 8(8,, ) such that

Ts = [((E J,(0) = 7oz 60){(8y— D)5 folx 6)

9* "
7 Folx 67) Yu(x)dx.

+-§—(6O— 9)? 3

Kim et al.(1997) showed that
(n) "2 3 [(A, (5, X2 w0de = () ™ [ folw 60w [ KAz
+0(n " H+0,(n 0.

And it can be easily shown that

Tsw = & Wdu(0— ) [ £, (5 00~L5 folx Bu(x)dx+ Op(n ~)(1+ (1)),

(6= B) = n 7' 23 -T5 log 41X 8)(I(8)) "} +0,(1).

These and Theorem 1 together show that the following equation holds
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Tu= by = 20nh) "' 2Zu+2(nk) % 30 HJ(Xi X))
1<iK1<n
+ 12y [(fy (5 00~ (fy (6 002 fo(x By )
K0’0390’0360v0
xn 7 23 = 108 Ao X0 )UK 8) T+ 0,(1)
+0,(n D+ 0,(n " ¥2n7Y),
The proof can be completed similarly as in Kim et al.(1997).

Remark : Let fj(x) be the true density and 6, be the minimizer of the Kullback-Leibler

divergence between fi(x) and fy(x;6), ie, 6y= argmin 4 f log(%)fl(x) dx. Basu et

al. (1998) proved that the consistency (to ;) and asymptotic normality of the MLE 4, .

Using this, it can be easily proved that T, — f (fo (x; 0) — /1(2))2u(x)dx (in probability).

This shows that our test is consistent.
3. Monte Carlo Power Study

3.1 Critical values

For the modified classical goodness-of-fit tests D, W, and A2, Stephens(1974) gives the
approximate quantiles for some families of null distributions. Table 1 gives the quantiles for

some functions of the above statistics under the normal distribution N(g,c%).

Table 1. Quantiles for Functions of D,, W, and A2

Quantile
Function 85 90 .95 975 99
(n'?— .01+ .852"Y5)D, | 775 819 895 955 1.035
(1+ .52 " HW 091 .104 126 148 0.178
(1+4n "' —252 "HA? 576 656 787 918 1.092
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In section 2, we proved that the proposed test statistic 7T, converges in distribution to

normal random variable. But The empirical 95th percentile of n ¥1( T,—b,) were found to

be quite different from the 95th percentile of N(0, 1), which is because of the very slow rate
of the convergence. Therefore, in the power comparison of the next subsection we use the

empirical critical values instead of the percentiles of MO, 1).

3.2 Simulation results

In this subsection, we will compare the performance of the proposed test statistic 7, with
the Kolmogorov-Smirnov statistic D,, the Cramér-von Mises statistic WE, and the
Anderson-Darling statistic A%,. This was done via simulation. The simulation study consists
of four cases of null distribution: standard normal distribution N(0,1), the chi-square

distribution %%(6), the Weibull distribution W(2,1), and the exponential distribution Exp(3).

For each case, 1,000 replications are done for =50, 100, 200. All random variables are
generated by the IMSL subroutine. To find the kernel density estimates, we use the Gaussian
kernel when the null density is normal and use the Epanechinikov kemel when the null

density is chi-square, Weibull or exponential. We set the weight function w(x) for T, the

indicator function of null distribution support. The bandwidth # is selected by minimizing the
asymptotic mean integrated square error(AMISE).

When the null distribution is normal, as the critical value for 7, we use the empirical

percentile, while critical values for D, Wg,, and Ai are taken from Table 1. When the null

distribution is chi-square, Weibull, or exponential, the critical values for all of the 4 test
statistics are empirical percentiles. To compute the empirical powers of the tests, the number

of rejections of H, are counted for each test. The empirical power is the number of rejections
of H, divided by 1,000. For all cases, we set the corresponding alternatives as
(1—e)F;+ eFy, where F; is cdf of the null distribution and Fy is cdf of contamination

distribution. We use € = 0., 0.1, 0.2, 0.3, 04, 05

First, for the normal null distribution we set the corresponding alternatives as
(1—eF;+eFy, where Z~N(0,1) and Y~ Beta(2,2). The results of the power study are

shown in Table 2, which shows that the powers of T, are worse than those of the other

statistics on the whole. But as & gets larger and n increases, the power of T, improves

and becomes almost the same as the other statistics.
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Second, for the case of the x? null distribution we set the alternatives as (1 — &)Fz+ eFy,
where F; and Fy denote cdf. of Z~%%(6) and (Y—6)~ Beta(2,2), respectively. Table 3
shows the empirical powers for the four tests. When the sample size #=100, 7T, takes .384
as the power for &=.1. But under the same condition, D,, W%, and AE, takes .294, .263 and

189, respectively. From the results we can see that 7T, has better power than the other

statistics.

Third, for the Weibull null distribution case we set the alternatives as (1—¢&)Fz+ eFy
where Fz and Fy denote cdf. of Z~ Weibull(2,1) and (Y—1)~ Beta(3,2), respectively.

Table 4 shows that 7, is more powerful than the other statistics.

Fourth and Last, when the null distribution 1is exponential, the alternatives are
(1—e)F;+eFy , where Fz and Fy denote cdf. of Z~Exp(3) and (Y—-3)~B(2,2),

respectively. The powers of T, D, W, and A% are given in Table 5, which gives similar

result as the previous case.

TABLE 2. Empirical Powers of Tests when Hj: f~ Normal

&
n Statistic 0 g 2 3 4 5
T, 050 075 199 433 616 836
D, 046 .090 267 546 760 886
>0 W 045 101 340 635 849 949
A? 053 102 310 608 834 941
T, 050 101 348 738 950 998
D, 052 158 493 841 974 997
100 W 059 199 543 896 986 1.000
A? 057 .169 A97 873 985 0.999
T, 050 194 731 982 1.000 1.000
D, 061 293 815 992 1.000 1.000
200 W 059 328 856 998 1.000 1.000

A? 052 .281 833 997 1.000 1.000
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TABLE 3. Empirical Powers of Tests when Hj: f~ %
€

n Statistic 0 1 2 3 A4 5
T, 050 206 630 916 998 1.000
D, 051 169 542 878 989 1.000

50 114 051 167 526 865 993 1.000
A% .050 126 408 779 976 997
T, 051 384 939 998 1.000 1.000
D, 050 294 860 995 1.000 1.000

100 W 051 263 851 995 1.000 1.000
A? 051 189 757 983 1.000 1.000
T, 051 769 998 1.000 1.000 1.000
D, 051 590 990 1.000 1.000 1.000

200 W, 051 572 989 1.000 1.000 1.000
A? 050 458 968 1.000 1.000 1.000
TABLE 4. Empirical Powers of Tests when H,: f~ Weibull

€

»n Statistic .0 1 2 3 4 5
T, 050 301 683 950 996 1.000
D, 051 188 527 879 985 999

>0 W 050 212 560 886 984 999
Al 050 227 594 909 987 999
T, 051 466 929 998 1.000 1.000
D, 050 325 852 998 1.000 1.000

100 17/ 051 372 869 995 1.000 1.000
Al 050 405 884 998 1.000 1.000
T, 050 702 999 1.000 1.000 1.000
D, 051 542 994 1.000 1.000 1.000

200 W 051 621 992 1.000 1.000 1.000
A? 051 663 996 1.000 ©1.000 1.000
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TABLE 5. Empirical Powers of Tests for Hy: f ~ Exponential

&
” Statistic .0 A 2 3 4 5
T, 051 239 712 954 998 1.000
D, 052 172 557 864 985 999
>0 W, 050 195 597 882 988 1.000
A? 050 161 513 839 985 1.000
T, 051 417 945 999 1.000 1.000
D, 052 285 841 994 1.000 1.000
100 W 051 309 865 992 1.000 1.000
A? 051 260 821 991 1.000 1.000
T, 051 727 1.000 1.000 1.000 1.000
D, 050 500 991 1.000 1.000 1.000
200 W 050 522 990 1.000 1.000 1.000
Al 050 457 988 1.000 1.000 1.000

4. Concluding Ramarks

In this paper, we have studied the goodness-of-fit test in density estimation problem when

the null hypothesis is composite. We modified the L*-distance statistic which was proposed
by Kim et al.(1997), and proved the asymptotic normality of the test statistic for the case of
one dimensional parameter theta. For the multi-dimensional parameter theta, the asymptotic
normality could also be shown in the similar way. The power comparison between the test

statistic 7T, and the other classical test statistics is done through the Monte Carlo methods.
Because of the slow convergence rate we use the empirical critical values for T,. For testing
normality, T, shows worse power than those of the other statistics for small # but shows

almost the same power for large » and €. For the other three underlying distribution, 7T,

shows better powers than the other statistics.

APPENDIX
Proof of Theorem 1.

(i). Since 8— 6p=0,(n "'?) by Remark (b), it is sufficient to show that
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[ (&5 s 6.9 wl2)dx= 0,(D).
By the assumption (A3),
[ fm 0 N wDades [ HiDuw(xds = M < o

if |8.—8)<c for some c. Therefore

A [(F5 A(w 0. wxds> M) < P16~ 6> 0)
< P(19—6)>c) — 0, as n— o,

This shows that f(%fo(x, 8.)*u(x)dx= 0,(1) , which completes the proof of (i).

). H [ 7,00~ E 71(0) 25 Al 6wl n)a] =0,

and

Var] [( (0= E }4(0) 5 fols G0 ()]
= 27 3% Vol [ K= X5 fols Op)ul )]
=n ‘I[E{fK,,(x—Xl)—a%fo(x, G0) w(x)dx}’

— (B[ Ki(x = X0) =3 fil % 0wz}’ "

. . 2
For the notational convenience, let fy(x; 65) = —aa; folx8y) and fy(x 6y) = —aa;g folx 8y). The
second term of (A.l) is

B{ [ Kilx— X35 fils )l )
= [ [ Kix— 025 filx 80)w()fo( 25 60)drde
= [Z5 fi(s 8wl [ K(Df(x— ht 6u)dtd,
and by the Taylor series expansion, this is equal to
9= £y 60) — htfy
2 fy(5 80)w(x) [ K(D(fy (x5 6) — htfy (x5 60)
5~ Jo (%6 o( h°))dtdx

= [ 15 00)w(0)fo 5 60) e+ O,
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Also the first term of (A.l) is

E( [ K= X)-Z5 s 0)uldck).
= B[ [ [ Ko X)~F5 £ 60) i)
x Ky = X) =375 fo 3 0) w(3)cdxcy]
= [ [ [ Bilx— 025 fols 60 w()
X Ki(y— u)—a%fo(y, 80) w(y) fo( 2 6y) dudydx
= [ [ [ K+ KEGE+ 025 Al 60 wlx)
x ‘% fo(35 6) w()fo(x — ht 6y)dtdxdy
= [ [ [ KK+ 975 7ol 8p)ul)
x L fy(e+ s Oyl + hs)y(x— ht Oy dtdsdle

=fffK(t)K(t-i-s)—ggfo(x,Bo)w(x)

Ks?
2

x {%fo(x, 60)+m765f5(m 6y) + —ggfb'(% 6o) + o( K*))

K2
2

x {w(x) + hsw (x) + 55w (1) + o(hD)}
U 80) — ity o 80+ 5 £y s 80) + o)) e

= [(Z5 fi(x 0)w(x) o (5 B+ OCD),

by substituting ¢t=(x— w)/h and s= (y— x)/k. Therefore,

Var] [( 40— E 710~ fols )l )]
= n [ [(F5 £l 000 (5 60) e
([ 55 1o By )] +- 0 1)
= n [ Bl Fo(X: 801 X0)2 = (B2 fo( X: 6w X0)] + o(n ™)

= n " Warl 55 A(X: 6)u(X0]+o(n ™),

495
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where X~ fo(x%6,) . Thus,

JC 3@ = E 76025 film 6wk n)de= 0,(n ™). (A2)

Now consider the second term of (A.1). It was shown in Kim et al. (1997) that

[ 70— E 7o) w(x)de= 0, (nh) 7. (A3)

Similarly as in the proof of (i), it can be shown that

[ A D ulDde= 0,(D). (Ad)

(A.3), (A4), and the Cauchy-Schwartz inequality together show that

[ a0 = BN i 6l = O, (uh) =), (A5)

The proof of (i) is completed by (A.2) and (A5). ©

(1]

(2]

(3]

(4]

(5]

(6]

(7]
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