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Ergodicity of Nonlinear Autoregression with Nonlinear
ARCH Innovations?
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Abstract

This article explores the problem of ergodicity for the nonlinear autoregressive
processes with ARCH structures in a very general setting. A sufficient condition for
the geometric ergodicity of the model is developed along the lines of Feigin and
Tweedie(1985), thereby extending classical results for specific nonlinear time series.
The condition suggested is in turn applied to some specific nonlinear time series
illustrating that our results extend those in the literature.
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1. Introduction

In last three decades, a large amount of research has been directed to nonlinear time series
models. This is because these models are known to explain nonlinear features such as
asymmetry, jump phenomenon and limit cycle which would not have been accounted for by
linear ARMA time series. We refer to Tong(1990) for a comprehensive treatment of nonlinear
models as alternatives to ARMA processes.

The p-th order nonlinear autoregressions are defined by the difference equation

v=Fe(y,-1, ", ¥:i—,) + & (1.1

where {&,} is iid sequence of innovations and & denotes a parameter vector of appropriate
order. (1.1) embodies threshold autoregression and exponential autoregressive process as
special cases.

This article postulates the innovations {&, evolving with nonlinear conditional
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heteroscedastic patterns. Specifically {&,} is assumed to follow the nonlinear ARCH(m)

process, Viz.,

&= m * e (12)
hf=aO+Ga(et—lr.“’€t-m) (13)

where {e,} is iid sequence of random variables with zero mean and unit variance, G,{( - ) is
a possibly nonlinear function of the innovations &,-;, ', &,_, and G,(+)=0 with «
being a vector of parameters indexing the conditional variance #,. Accordingly, the model

defined by (1.1) through (1.3) can be viewed as a fairly general nonlinear autoregression with
nonlinear ARCH errors.

Statistical analysis of the time series models tacitly assumes that the model is ergodic and
hence is strictly stationary, from which one can establish the central limit convergence and
the ergodic theorem, if applicable. The ergodicity of (1.1) has been examined under various
sets of conditions by many authors including Feigin and Tweedie(1985), Chan and Tong(1985);
more recently, Lee(1996), An et al.(1997) and Lee(1998). However their methods can not be
directly applicable to the general models specified by (1.1) to (1.3). Our objective in the
present paper is to develop a set of sufficient conditions under very broad setting. We will
tackle the questions of ergodicity for the model by modifying the general conditions for the
Markovian time series mainly developed by Feigin and Tweedie(1985), An et al.(1997) and
Lee(1998).

The rest of the paper proceeds as follows. Section 2 obtains the geometric ergodicity of
the model with brief summaries of the standard terminologies appearing in Markov processes
for the quick reference. Section 3 illustrates applications of the main results regarding
ergodicity to the specific nonlinear time series examples including two relatively new models
in time series literature.

2. Geometric ergodicity of the model

We begin with the formal definition of the term "ergodicity” for a Markov process. Let

{X,, t=0} be a first order Markov process taking values in R*, the k-dimensional

Euclidian space. For notation, P (x, A) denotes the homogeneous t-step transition

probability of the process, i.e., for A in the Borel- g-field on R*

PW(x, A)=P(X,€AlX,=x) 2.1
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{X,} is then called ergodic if there exists a probability measure H such that for every

xe R*
NP (x,A) = [Ty = 0, ast— (2.2)
where || - |l 7 stands for the total variation norm. Moreover, if the convergence in (2.2) is

exponentially decaying (to zero), viz., for some 0< o<1 and for every x< R*
1PV (x, A) = TI(A)llrv = o) (23)

then {X,} is called geometrically ergodic. The measure II(-) in (22) or (2.3) is usually
referred to as the stationary distribution for {X,}.
Returning to the time series {y,} specified by (1.1) to (1.3), observe first that {y,;} forms

a p+ m= k, say, order Markov process. To obtain the first order representation, introduce
kx1 vectors X;, M and V defined as follows.

th (yt’ yt—l! Tty yt—k+l)’
M(Xt—l)=(F6(yt—l), Vi—1s V-2, yt——k+1)l

and

V(X)) = (r}?,0,0,0)

The model {y;} can then be written in terms of a first order %£X 1 vector Markov

process, namely,
Xf=M(Xt_1)+ V(X,_.l)'e, (24)

where e, is independent of X ,;_;.

In order to establish the geometric ergodicity of {X,}, and hence of {y,}, we impose the

following conditions.

(C0) {e;} has a probability density with support (—co, o0).
(C 1) There exist nonnegative real valued functions f(8) and g(8) such that, for given
450, there exists >0 ( y may depend on &, @ and 4) satisfying for all || - |l> 7
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IFC )< A -1l +4
1G.( ) <g(a)ll-11?+ 4

where || - || is used to denote the standard Euclidian norm defined in appropriate dimension.
Theorem 1 : Suppose that f(8)+ g(a)<1. Then {y,} is geometrically ergodic.

Proof : We shall verify the conditions in Theorem 1 of Feigin and Tweedie(1985).
First, it follows from (C 0) that {X,} is ¢-irreducible with ¢ being the Lebesgue measure

on R* and that {X,} is clearly a Feller chain (See, An et al(1997) for relevant discussions).
It now remains to verify the condition (ii) in works from Feigin and Tweedie(1985). To be

more precise, it needs to be shown that for some &>0, there exists a non-negative

continuous real valued function ¥ : R*— R such that
E[ W(X,)lX,_l=x,_1]S(1—3)¢(x,_1) (25)

for all sufficiently large {|lx,-1ll. For (25) we proceed as follows. Define the set C; of all

x ;-1 sufficiently large
Cr={xi1= (¥, ¥e=p) 5 |yl >y, i=1, 0 B
It then follows from (C 1) that on C;
lyd <4+ £(8) IX - ill + Vi, - e (26)
Moreover, it is seen that on C,
Vie<g(a) IX il +c 2.7

with ¢= (ag + 4) 2.
Collecting (2.6) and (2.7) and using Ele/ <1, some tedious but straightforward manipulation
yields that

E(y|X -1 =x,-)<{f(0) +g(a)} lx~1ll + c+ 4 (2.8)
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Our immediate goal is to choose ¥ satisfying (2.5). Construct the following non-negative

continuous real valued function ¥ : R*— R
T(uy, = w) =1+ (g, udllo (2.9)
where || - |l is a "modified” infinite norm defined as
1 Coey oy wdllo = max { Byle], -+, Brlusl} (2.10)

Here f’'s are strictly positive constants with constraints which will be specified in (2.12) in
the course of the proof. It is to be noted that e; is independent of X, ; and Ele/<1 from
which it can be deduced using (2.8) that

E[¥XIINX -1 =211

=1+ E|[ maX{B1|J’t|, /32|yt—1], Tty Bli’t-—k+1|} le—l = xl—l]

<1+ max {8 (A(8)+g(a)) llx,—1ll + Bi(c+ ), Baly =il =, Bely t—p+1l}
(21D

Exploiting f(8) + g(a)<1, pick up éd=1—f(8)— g(a)>0. The RHS in (2.11) then
attain an upper bound (1—&8)[1+ max{B;|y,—il, =, Bely s}l = (1—8) ¥(x,_,) for all
sufficiently large |lx,-,lle (call this region C,) provided that

0<Be< B << By
and
B1(1—8)< B (2.12)
Consequently, the assertion (25) holds for all x,-, C;(1C; , as desired, completing the

proof.

3. Examples

This section discusses some specific nonlinear models where the general conditions in
Section 2 reduce to the explicit formulation. To avoid repetition below, {e,}, in this section,
stands for the arbitrary sequence of iid random quantities with zero mean and variance unity.
We give the main argument and results, only omitting some details. Comparisons and

analogies to classical results are also made. Examples are including various nonlinear ARCH
models which are interesting in their own rights.



570 S.Y. Hwang and ILV. Basawa

Ex 3.1. Nonlinear autoregression. The difference equation for the classical p-order

nonlinear autoregression (NAR( p), hereafter) is given by
YVe= Fe(}’t-—x, Tt yt—p) + &

with {e,} being a sequence of iid random errors. Taking G,(+)=0 in our model yields

NAR( p). The condition (C1) is then equivalent to : For given 4> 0, there exists nonnegative
real valued function f(&), >0 such that f(8)<1 and |Fe( - )I<AE) |||+ 4 for all

Il -1 > y. This condition implies that once (¥;-y,*,¥,) drifts to "abnormally” large
values, y, is forced to bounce back to "normal” level. Refer to Tong(1990, Ch.4) for similar

discussions.

Ex 3.2. S-ARCH model. Consider the following first order A~ARCH processes first
discussed by Guegen and Diebolt(1994) and later studied by Hili(1999).

vi= 0y, + (ag+ d*y¥ ) e, 161<1 (3.1)
where 0<B<1. Note that f=1 gives standard ARCH(1) processes of Engle(1982). One
may choose f(8)=160| and g(a)=|a| and thus the condition is simply |8} + la| (1,
which agrees with the condition imposed by Guegen and Diebolt(1994). An et al.(1997)
investigated the m~th order B-ARCH processes,

3’:={ao+a%(J’t—l)2ﬂ+"’+a’§n(3’t—m)2ﬂ}‘et (3.2)
Setting F,=0 and taking

2 _2 2 2
Go()=0a%c¥ + -+ e,

in (1.1) to (1.3) yield (3.2). By identifying f(8) =0 and g(e)= max{|el, -, |a.l} the

ergodicity condition reads

max {|al, -, lanl}<1 (3.3)

which is an improvement compared to the earlier results 2‘ a?( 1 for the case when f=1,.
=

obtained by An et al.(1997).
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Ex 3.3. Threshold ARCH processes. We now consider the following threshold ARCH( p)
processes.

Y = Z:‘(ﬁﬂy::q‘*' 02yi-1) + &

Ey = m M - (3.4)

h = ay+ ;:l[a%] (ef )2+ dh(er)?]

where a” denotes al[,»¢ and al[,(q respectively. Note that (3.4) introduces “thresholds”

both in the conditional mean and in the conditional variance as well. An obvious choice for
f(8) and g(a) is

f(8) = max 1sisp{ max(|611|,|9,2‘)}
and

g(@) = max j<;<m{ max (|a !, la D)}

For the special case when p=1 and a;;=a;,=0, 1=<;<m , threshold ARCH models
reduce to the standard threshold AR(1) processes. Ergodicity condition is then eguivalent to

max { |81, 1621} <1 which agrees with the condition as in Brockwell et al.(1992). Refer to

Hwang and Woo (2001) for the first order model where p=1 and m=1. Our last example
delivers a bounded version of the ARCH processes.

Ex 3.4. Bounded ARCH processes. Set m=1 without loss of generality and, consider
Y = Fo(yt—l s "'.J’t—p) + &

& = \/71‘ T €y
and take ’
he=ay+ aty(e,_y) (35)
where

2(e 1) = E I ica1 + e, ba (36)

with d being a prescribed constant. (3.6) is fully motivated by Huber function in the context
of M-estimation. It may be noted that the usual ARCH(1) structure can be obtained by

releasing d infinity. Due to the boundness of the ARCH structure (which is reasonably the
case in practice), the ergodicity condition is rather simple for this example. It is easily seen
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that one needs only to impose the same conditions as for NAR( p) discussed in Ex 3.1. for

the geometric ergodicity of {y,}.
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