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Efficiency of Aggregate Data in Non-linear Regressionl)

Jib Huh2)
Abstract

This work concerns estimating a regression function, which is not linear, using
aggregate data. In much of the empirical research, data are aggregated for various
reasons before statistical analysis. In a traditional parametric approach, a linear
estimation of the non-linear function with aggregate data can result in unstable
estimators of the parameters. More serious consequence is the bias in the estimation
of the non-linear function. The approach we employ is the kernel regression
smoothing. We describe the conditions when the aggregate data can be used to
estimate the regression function efficiently. Numerical examples will illustrate our
findings.
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1. Introduction

Sometimes, only aggregate data summarized individual data in each groups or areas have
been observed, and individual data are unavailable. An aggregate data analysis is based not
on the individual observations but instead on their averages. Consider the bivariate full data

(Xa,Yy), (X, Yi) which form an independent and identically distributed sample from

a population (X;,Y;),i=1,--,M. Of interest is to estimate the regression function

m(x) = E(Y]X,= x). Especially, we are interested in estimating the regression function m(x)
based on the observed sample {(X, Y),i=1,--,M} where X,= le,-,»/ni and
~

7i= ,2 Yij/ni .

When a regression function was linear, Aitkin and Longford (1986) estimated the regression
model based on aggregate data unbiasedly, and showed the estimator would be highly
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unstable with a very large standard error due to the sampling varation. Prentice and
Sheppard (1995) introduced a method for the analysis of aggregate data studies, with binary
responses. Carroll (1997) studied the effect of measurement error on the Pretice and Sheppard
unweighted aggregate data analysis with the various populations.

When the regression function is non-linear, we may have serious biased estimators for the
non-linear function. This is illustrated in Figure 1. The solid curve is the true regression
function. Assume that three individual data points represented by dots are observed in a
group, and we get an averaged data point represented by an asterisk. The aggregate data
point seems to be far from the true value of the function.
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Figure 1: True regression function (solid curve), three individual data points (represented by
dots) and aggregate data point (represented by an asterisk)

We will explain intuitively why estimators for the regression function based on aggregate
data has a large bias. It is enough to consider that the regression function is quadratic,

Y =Bt BiX j+ BoXt ey  i=1,M j=1,,n; ()

where the error €; are independent and identically distributed random variables with mean 0
and variance ¢?< 0. Then, the regression model based on {(X,, Y;),i=1,, M} could be

Y=o+ BiXi+ By Xitel, i=1,,M. (2)

Here the errors ¢, different from €; are independent and identically distributed random

variables with mean 0 and variance 02/ n,;. However, the true regression function (1) averaged

by index j can be written as
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Yi= B+ B X+ By ,ZIXZI'/'/”i'*'E'» =1, M, 3)

where &;= 215,7/ n;, t=1,--,M According to the difference between the conditional mean
f=

parts in (2) and (3), the model (2) has a model bias related to the within group variances
Bo( Z;XZ.-,-/ n;— Y{z). The assumption that the errors &; have mean 0 makes the model
f=

bias. In order that the model (2) may be equal to the true regression model (1), the errors e&;

n
.. 2
must be assumed that the conditional means of them are S( IZ:IXZ,;/ n,— Xi).

In this paper, we discuss the conditions when the aggregate data can be suitable to
estimate the non-linear regression function without assuming a specific parametric form. In
Section 2, the asymptotic bias and variance of the kernel type nonparametric estimator for the
regression are described. Section 3 shows simulation results. Finally some technical arguments
are deferred in Section 4.

2. Local Modeling and Estimation

The usual nonparametric assumption is that the full data satisfy the relationship
Y,j=m(X,j)+e,-,-, =1, M j=1,"',n,~ (4)
where the errors ¢ are independent random variables with mean zero and variance o¢°< o,

We suppose for the sake of definiteness that the regression function m is defined on [0,1].

There now exist many methods for obtaining a nonparametric regression estimate for .
Some widely used methods are those based on kernel functions, spline functions, and
wavelets. Each of these methods has its own merits. The kernel based approach is, however,
preferable because of its mathematical and intuitive simplicity. Stone (1977), Cleveland (1979),
Miiller (1987) and Fan (1992) studied a class of kernel type regression estimators called local
polynomial estimators. Local polynomial estimator is more attractive method both from
theoretical and practical point of view than other commonly used kernel type estimators. See
Wand and Jones (1995), and Fan and Gijbels (1996). For simplicity, we choose local linear
estimator for our study.

To estimate the regression function based on the aggregate data {(X; Y),i=1,-, M},

we approximate the unknown regression function m locally by a linear function. Let K be a
kernel function and % be a bandwidth. At a point x an estimator for m(x) is obtained by

fitting the linear function a+ A8(+ —=x) to the (X, Y, using weighted least squares with

kernel weights K,(X;— x): minimize

ﬁ‘{"ﬁ—a—ﬁ(“)ﬁ—x)}%(f,»w) (5)
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where K,(#)=h 'K(u/h). Denote by @ and B the minimizers of (5). We suggest that an

estimator for m{x) is

m(x)=a. (6)

We consider that the number of data in each group #; is fixed.

Before describing the asymptotic bias and variance, we need some assumptions. For
simplicity, the number of data #; in the ith group is fixed as #, for all i Let N=M-=»

denote the number of the full data and g; denote the design density of X, Define [a;,b,]
as the support of the design density g; Let us assume that the function m is twice

continuously differentiable on [0,1] and the bandwidth #% satisfies 20 and Mh—oo as
M—co. The latter assumption implies that NA—00 as N—>00 since the number of data in
each group # is fixed. Further, assume that the lengths of the supports L,=b;,—a; go to

zero faster than the bandwidth k% does, as M—oo and U la; b1=[0,1], for every M.
This assumption means that the interval [0,1] can be finely divided as increasing the

number of groups M and the union of supports is [0,1]. Define Ax)= }41320 gf,'(x)/M

where the function f; is the density of }Z which is not degenerated since the number of

data % is fixed. We assume that the function f is bounded away from zero on [0,1].
Suppose that the kernel K is symmetric about zero and a probability density with support
[—1,1}

Write K3()=K*(u/h)/h and SSW;= §<X,,—Z)2/n. Let
Si= (X~ KK~ DIM,
Ti= 3 SSW(X~ 'Ky X~ /M,
U= 3K~ KX DIM,
where !=0,1,2,3. Under the assumptions described above, the expectation and variance of
the estimator m(x) in (6) is given by

. ~, o - " =2
blaS( m(x)le,-",XM)= mz(&l —S—()?zl_ ?12( Sg _—Sl Sg+ SQ TO—SI Tl)(l'*'Op(l))s (7)
~ o - =257 o, o2
Val‘(7‘)2(96)])(1,“‘,)(/14)= ;\)}zh (§0~—S—2£ 3—12)2( Sz UO—ZSl Sg U1+ Sl UQ)
The kernel weighted local linear fitting makes the first two terms within the brackets of the

bias in (7). On the other hand, the bias has the extra terms kernel weighted the within group
variances SSW,; at center x. Therefore, the asymptotic bias depends how large the within
group variances are. It means that the bias can be reduced if we can divide finely the domain

of m to get small the within group variances. However, the variance term does not depend
on the within group variances. Now, we will show that the rates of convergences of the
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asymptotic bias and variance are same with those based on the full data. For a unifying

treatment of interior and boundary points x, we consider an effective range of integration. Let

=Lx,)=[(&—1/hx/kIN[—1,1], u;Euj(D=flz’K(z)a’z and w=w,(l)= flz’Kz(z)dz.
As h goes to zero, the interval I(x,s) reduces to [—1,1] for an interior point
x€[h,1—h), and to [—1,¢;] or [—c¢y,1] for a boundary point of the form ¢k or
1—ch (0<c, c3<1). To approximate the leading bias and variance in (7) analyses similar
to those used in Wand and Jones (1995, see page 123-124) give

Si=h'v(K) Ax)(1+0,(1) and T,;= k'@ A)(1+0,(1)),
for 1=0,1,2,3. Let K;(2)=(vovo—vy) (vo— uv))K(w). Write x1=£u2K1(u)du, and

Xy = fI{Kl(u) Y2du. Now, the estimator 7(x) has pointwise asymptotic bias and variance,

asymp. bias {m(x) } = —%—xlm"(x)h 2 and asymp.var{m(x)}= % xz;f(x). 8

The asymptotic bias in (8) is same with the leading bias term of the local linear regression
estimator based on the full data. On the other hand, the asymptotic variance is almost
unchanged. Its denominator has the limit value of the average densities at the point x. Hardle
and Grund (1991), Hardle and Scott (1992), and Fan and Marron (1994) have studied the
regression function estimation based on the binned data to get fast computing algorithms. The
main philosophy of their proposed methods is to use a small data set summarized the binned
data instead of a full data set. We also reduced the computing time with the aggregated data.
Hall, Park and Turlach (1998) have considered the regression function estimation based on the
transformed and binned data to overcome problems associated with irregularly-spaced design.
In the case of the bin width going to zero faster than the bandwidth, they showed that the
rate of convergence of their estimator was same with that of the estimator using the full data
set. In our case, since the lengths of the supports of the design densities are decreasing as
increasing the number of groups M and it converges to zero faster than the bandwidth, the
last two terms within the brackets in (7) converges to zero faster than the first two terms.

Then, the estimator m is a consistent estimator and has the same rate of convergence of the
local linear estimator based on the full data set. The difference between binned data and
aggregate data is that all of bins are disjoint but the interval in which data are aggregated
does not need to be disjoint.

3. Numerical Experiments

To investigate the performance of the aggregate data, a simulation study is carried out.
Consider the model

m(x)=4(x—0.5)+%exp(—64(x—0.5)2)1(0$xsl). (9)
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For the calculation of the estimations, we use the Epanechnikov kernel function
K0 =4(1-2)I14<1).

We try several values of M and n. We consider three and four types of M and =,
respectively, such as M=30, 50, 100 and #»=5, 10, 50, 100. Furthermore, we choose two kinds

of distributions of X,. In the first case, the covariate X ; is distributed as

- 1G=0/101 [(G=D/AM+1]
X,»,-~Un1form( 10 , /10 ), Z

[ #] is the largest integer that does not exceed #. Next, we select the beta

:1‘...’M j=1,"', n,

where
distribution Beta(e, 10— a). When M=30, 50, and 100, the parameter a of the distribution
are 2.5x[((:—=1)/10)+ 1], 2x[((i=1/10)+1]—-1, and [((;—1)/10)+1]1-0.5,
respectively. In the second case, all of the beta distributions have the same support [0,1] on
which the regression function m in (9) is defined. We can guess that the local linear
estimator for the regression function based on aggregate data under these distributions must
have the poor performance since the support [0, 1] is not finely divided as increasing M as
we assumed. On the other hand, in the first case, the support [0, 1] is divided several parts
of which lengths are decreased as increasing M. We compare the performance of local linear
estimator under the first design case with that under the second design case. The Gaussian
white noise with ¢=0.5 is added to produce the simulated data. Table 1 and 2 contain the
results of the simulation based on 1000 pseudo samples. We compute the Monte Carlo
estimates of the integrated mean square errors (MISE) for various bandwidths /%, but the
minimum MISE’s are reported in the tables with the optimal bandwidths. We also give the
Monte Carlo estimates of the integrated squared biases (IBIAS) and variances (IVAR)
corresponding to the minimum MISE’s. In each every two rows, the first one is the results
based on the full data, and the second one is those based on the aggregate data.

Table 1: The Monte Carlo estimates IBIAS, IVAR and MISE with standard errors
in brackets based on the full data and the aggregate data when the design densities
are uniform distributions.

(M, n) h IBIAS IVAR MISE
(30,5) 0.10 0.003491 0.014154 (0.000228)  0.017645 (0.000268)
0.20 0.046165  0.025688 (0.000707)  0.071853 (0.000785)
(30,10) 0.08 0.001595 0.008121 (0.000113)  0.009716 (0.000126)
0.22 0.043639 0.019898 (0.000566)  0.063538 (0.000614)
(30,50) 0.06 0.000516 0.001959 (0.000024)  0.002475 (0.000029)
0.22 0.039808 0.018459 (0.000661)  0.058267 (0.000684)
(30,100 0.05 0.000268 0.001123 (0.000012)  0.001392 (0.000015)
0.23 0.040654 0.017878 (0.000529) _ 0.058532 (0.000547)

(Table 1 continued)
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(M, n) h IBIAS IVAR MISE
(50,5) 0.09 0.002461  0.008876 (0.000130)  0.011338 (0.000159)
0.14 0.013732  0.014867 (0.000361)  0.028599 (0.000407)
(50,10) 0.07 0.000896  0.005265 (0.000066)  0.006161 (0.000074)
0.14 0.012977  0.012182 (0.000303)  0.025159 (0.000325)
(50,50) 0.05 0.000255  0.001389 (0.000015)  0.001644 (0.000018)
0.14 0.011679  0.011195 (0.000354)  0.022891 (0.000356)
(50,100) 0.04 0.000116  0.000830 (0.000008)  0.000947 (0.000009)
0.14 0.011386  0.011527 (0.000323)  0.022913 (0.000325)
(100,5) 0.07 0.000924  0.005199 (0.000068)  0.006123 (0.000076)
0.08 0.003920  0.008198 (0.000165)  0.012118 (0.000174)
(100,10) 0.06 0.000521  0.002909 (0.000033)  0.003430 (0.000040)
0.08 0.004433  0.006156 (0.000153)  0.010589 (0.000160)
(100,50) 0.04 0.000115  0.000839 (0.000008)  0.000954 (0.000010)
0.09 0.005517 0003810 (0.000133)  0.009327 (0.000138)
(100,100) 0.04 0.000109  0.000418 (0.000004)  0.000527 (0.000005)
0.10 0.006022  0.003361 (0.000116)  0.009383 (0.000138)

Table 2 The Monte Carlo estimates IBIAS, IVAR and MISE with standard errors
in brackets based on the full data and the aggregate data when the design densities

are beta distributions.

(M, n) [/ IBIAS IVAR MISE
(30,5) 0.15 0.013594 0.024691 (0.000845)  0.038285 (0.000865)
0.30 0.121467  0.046456 (0.001712)  0.167923 (0.002146)
(30,10 0.12 0.006529  0.015110 (0.000386)  0.021639 (0.000391)
0.29 0.119791 0.038193 (0.001345)  0.157984 (0.001672)
(30,50) 0.08 0.001600  0.004507 (0.000104)  0.006107 (0.000109)
0.27 0.113669 0.030939 (0.000952)  0.144608 (0.001287)
(30,100) 0.07 0.001043 0.002568 (0.000058)  0.003611 (0.000062)
0.27 0.112624 0.028251 (0.001035)  0.140875 (0.001366)
(50,5) 0.09 0.002392 0.008007 (0.000112)  0.010399 (0.000136)
0.13 0.077055  0.013191 (0.000321)  0.090246 (0.000707)
(50,10) 0.07 0.000974 0.004957 (0.000058)  0.005932 (0.000071)
0.13 0.083272 0.008840 (0.000235)  0.092112 (0.000541)
(50,50) 0.05 0.000279  0.001357 (0.000015)  0.001636 (0.000018)
0.11 0.081878 0.008152 (0.000200)  0.090030 (0.000341)
(50,100) 0.05 0.000263 0.000667 (0.000007)  0.000930 (0.000010)
0.11 0.081141 0.007509 (0.000183)  0.088651 (0.000263)
(100,5) 0.07 0.000930 0.004792 (0.000061)  0.005722 (0.000072)
0.08 0.072118  0.006855 (0.000097)  0.078973 (0.000528)
(100,10) 0.06 0.000528  0.002828 (0.000033)  0.003356 (0.000039)
0.07 0.077638 0.004464 (0.000063)  0.082102 (0.000398)
(100,50) 0.05 0.000269 0.000648 (0.000007)  0.000917 (0.000010)
0.06 0.081665  0.002075 (0.000045)  0.083739 (0.000186)
(100,100) 0.04 0.000113  0.000399 (0.000004)  0.000513 (0.000005)
0.06 0.082260 0.001568 (0.000037) _ 0.083823 (0.000132)
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In the tables, IBIAS’s and optimal bandwidths based on the aggregate data are not changed
quietly as increasing #» in each case M. But, IVAR's are inclined to be decreased. The
minimum MISE’s of the estimators based on aggregate data under the first design cases are
smaller than those under the second design cases, due to smaller within group variances we
described in Section 2. This means that the performances of local linear estimators depend on
the lengths of supports of the design densities.

Figure 2 depicts, for a simulated dataset from the uniform and the beta distribution in the
case M,n=100, the true regression function denoted by solid curve, and the estimated
regression functions under the uniform and the beta design cases represented by dashes. To
see that the aggregate date are far from the true regression function, we plot the aggregate
data in this figure. The true regression function has non-linear curvature around 0.5 and 0.7.
The estimator under the beta distributions has large bias near the points.

(a) (b)

Figure 2: True regression function (solid curve) and regression function estimates (dashed
curves) based on aggregate data (asterisks) under (a) the uniform design density and (b) the
beta design density.

4. Technical Arguments

We will show some technical arguments for (8) here. Define X be MX2 matrix having
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their (7, /)th elements equal to (X;—x) ' and Y=(Y,,, Yy). Further, let W be an
MxM diagonal matrix of weights having the (7, 9)th entry equal to K,(X,—x). Assuming
invertibility YTW_X the standard weighted least squares theory lead to the solution of (6)
a=(X"WX) 'XTWY. Let B=( g‘&m(X win, -, me(X u)/m)T. Then, the conditional
expectation and variance of the estimator (6) can be written as follows:

B0 X, -, X =el( X" WX) ™' X" B,

Vark 01Xy, K =L el XTWR) ' XTWWR( XTWD) e,

(10)

where e;=(1,0)7. The variance term in (7) is obtained directly by (10). Then, we consider

the bias term only. Because the support of K is [—1,1] and L,/k—>0, we need only
consider | X;—x<h and |X ;—A _{IX,-,-—Y,{'*‘IZ—QL‘{“'}I, and thus

m(X )= m(x)+m (DX 5= 0+ 2 (X = 01+ 0, (D). (1)
By (11) and (10), we obtain
B Xy, . Ko = ml) + 28— L (7~ 5 7D+ 01)
So Se— Sy

where V,= ﬁ:‘{;(X,»j—-x)z/n}(z-x)lKh(_X—,-—x)/M for /=0,1. We can easily show
that
V, =k BEK-A(E- ' B, -+ &0
=T, + Si,
for /=0,1. This complete the proof of (7).
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