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The Sequential Testing of Multiple Outliers
in Linear Regression
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Abstract

In this paper we consider the problem of identifying and testing the outliers in
linear regression. First we consider the problem for testing the null hypothesis of no
outliers. The test based on the ratio of two scale estimates is proposed. We show the
asymptotic distribution of the test statistic by Monte Carlo simulation and investigate
its properties. Next we consider the problem of identifying the outliers. A forward
sequential procedure based on the suggested test is proposed and shown to perform
fairly well. The forward sequential procedure is unaffected by masking and swamping
effects because the test statistic is based on robust estimate,

Keywords : Least median of squares, Outliers test, Forward sequential procedure.

1. Introduction

It is well known that outliers can have an extreme effect on the least squares estimation.
Intuitively, an outlier is an observation (x; x5 -**,%x; )  which deviate from the linear

relation followed by the majority of the data. In the regression model,
yi = BotxabitxpByt txpByte i=1,2,,n 1)

where the error e; is assumed to be normally distributed with mean zero and variance 0’2,

the outliers are classified into two categories, the outliers in y-direction and the outliers in the
x-direction. Especially the ourliers in x-direction are called leverage points. The non-outlying
data will be referred to as the good data. It is assumed that good data contains more data
than 509 of the observations in the sample.

In lower dimension, graphical technique can be used to detect the outliers. When the
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regression model has less than three independent variables, the outliers can be detected by
scatter plots and spin plots. But the degree of outlyingness is based on the judgement of the
researcher.

However, when the independent variable is more than two, it is difficult to detect the
outliers by graphical tool. We have to resort to other methods.

There are two general approaches to dealing with the outliers, diagnostics test and robust
methods. Each approach proceeds the same problem from opposite side. Since the advantages
of one method tend to be the disadvantages of the other, we propose a diagnostic test by
combining two methods, which is unaffected by masking and swamping effects.

In this paper, we propose a robust diagnostic tool to detect and test the outliers in linear
regression. This tool is based on the ratio of a robust scale estimate and a non robust scale
estimate. And then we propose the following forward sequential procedure for identifying the
outliers. If the null hypothesis is rejected then the most extreme observation is removed and
the test is applied again to the »—1 remaining observations. This procedure is applied
iteratively and stops when the test is no longer significant. Since it is based on a robust
estimate of scale, one expects that this procedure will not be affected by masking and
swamping effects. This is confirmed by numerical examples.

The remaining of the paper is organized as follows. In Section 2 we introduce the test
statistic and the forward sequential procedure. In Section 3 we derive that the asymptotic
distribution of the test statistics by Monte Carlo simulation under the null hypothesis and
calculate the critical values and powers of proposed test. In Section 4 the proposed test and
the forward sequential procedure is applied to several real data sets and artificial data sets in
order to show their performances. Section 5 contains some concluding remarks.

2. Testing Procedure for Detecting Multiple Qutliers

In this section, we propose the test statistic for testing outliers in linear regression. The
test statistic is defined as follows. Least median of squares estimator, suggested by
Rousseeuw(1984), is known to be a highly robust method for estimating regression coefficient.

The least median of squares estimator 731.Ms is given by
Minimize med 72 (2)
B i
where 7;=v,— x; By, By=( X,T x)! x7 Y, x;=(xy xp-,x,) and J={i} iy, 1,}

is a subset of {1,2,---,7n} containing p indices. The breakdown point of least median of

squares estimator is approximately 0.5. The residual is given by

Yims, =Y X; BlLus. (3)
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The initial scale estimate s, for the least median squares regression is given by

SO=14826(1+5/(n_p— 1))V mEdi(VLMS{)Z. (4)

The initial scale estimate is then used to determine a weight w; for the ith observation,

namely
1 if c<riys/sp<d
wiz[ L.MS’/ 0 (5)
0 otherwise
where [¢, d] is the inner fence of boxplot of 71ys/S.
By means of these weights, the final scale estimate s for the least median squares
regression is given by
S=\/ lei(rLMS,-)z/( glwi—ﬁ“ 1). (6)

s also has a breakdown point 0.5, the highest possible value.

By contrast, the least squares estimator 3L5 minimizes

2 i (7

=1

The breakdown point of least squares estimator is 0. The residual is given by

Yis,= Vi~ x; " Bis. (8)

It is well known that outliers can have an extreme effect on the least squares estimator.

The scale estimate for the least squares regression is given by

0'=\/ Zl(VLs,)Z/( n—p—1). (9
The test statistics for testing the outliers is defined as
R=ad/s. (10)
It tests the following hypothesis
Hy : no outlier in data (xj3,%xp,°"", X, V), 1=1,2,,n (11)
H, : some outliers in data (x;,%xp, ", %p, ¥), 1=1,2,, n.

The null hypothesis is rejected for large R. However, if the null hypothesis is rejected,
there is no indication of how many or which points are outliers. To solve this problem, we
propose to apply the test sequentially in forward sequantial procedure to identify the outliers.
If the test rejects the null hypothesis then the point with the largest

D= |sorf 71ys) — Med(r ys)| is defined as an outlier. Where sor#(7ys) is the sort of 7y
and Med(r;ys) is the median of #pys. The observation detected as an outlier is removed

and the test is applied again to the n-1 remaining observations. The procedure is repeated
and stops when the test is no longer significant. The robust estimate of scale in the
denominator is required to ensure that the test statistic is sensitive to outliers and that the
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forward sequantial procedure is not affected by possible masking swamping effects of several
outliers.

3. Simulation and its Results

In this section we consider the properties of the proposed test. First we calculate the

critical values for the test. For this purpose, we generate sample for various sample size up
to 50 in the following situation,

y,-=x,1+x,2+---+x,-p+e,-_ (12)
in which e,~N(0,1) and the explanatory variables are generated as x;~N(0,49) for

7=1,2,---,p. Using 1000 replicates for each sampling situation we compute the critical values

for the test. A summary of our results for p=1,2,3,4 and sample size up to 50 is
presented in the Table 1.
Next, we consider the power of the test for various situation. First, we generate a sample as

e;~N(0,1) and x;~MN0,49). Second, to construct outliers in the independent variables space,
(1—2)x100% of samples are as in the first. The remaining ax100% are generated as
e,~N(0,1) and x;~MN,49). Finally, we make the outliers in response variable space. For
this purpose, (1— @)*100% of the samples are as in the first. The remaining a*100% are
generated as e;~MN(y,1) and x;~N(0,49).

Using 1000 replicates for each sampling situation, we compute the power of the test. A
summary of our results for a single outlier, various magnitude of outliers,
©=10, 20, 30, 40, 50, 60, 70, 80, 90, 100, p=1 and sample sizes 25 and 40, are presented in
the Table 2 and 3. The results for two outliers, various magnitude of outlier,

r=10, 20, 30, 40, 50, 60, 70, 80, 90, 100, p=1 and sample size 25 are presented in the
Table 4. The power of the test increases with sample size and magnitude of outliers.
Table 1. Critical values for the proposed test

Number of explanatory variable
Sample 1 2 3 4

sizes a level a level a level a level

01 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 01 005 001
15 |1.725 1.894 2072 |2.107 2223 2386 {2469 2622 2756 [2.807 2.89% 2992
20 11484 1637 1849 |1.850 1978 2.084 [2.121 2.246 2334 12323 2407 2580
25 ]1.493 1605 1759 |1.682 1.793 1.853 [1.950 2.044 2200 [2.164 2282 2388
30 11461 1570 1.717 |1.552 1.638 1.752 11.824 1921 2065 11982 2150 2333
35 1395 1475 1623 {149% 1578 1.688 |1.650 1.793 1925 |1.78 1910 2.103
40 11.326 1.403 1493 |1.417 1487 1580 11573 1.666 1774 11654 1769 1.3882
45 11276 1.337 1435 {1393 1473 1570 (1456 1548 1655 [1575 1688 1812
50 [1.266 1.338 1.403 |1.351 1.425 1515 1471 1.492 1575 {1466 1540 1631
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Table 2. Estimated power of the proposed test(n=25, p=1, one outlier)

significant magnitude of outliers
level 20 30 40 50 60 70 80 90 100
0.1 0.955 | 0.997 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.05 0.949 | 0.996 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 0.941 | 0.995 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3. Estimated power of the proposed test(n=40, p=1.one outlier)

significant magnitude of outliers
level 20 30 40 50 60 70 80 90 100
0.1 0974 { 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.05 0972 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 0.965 | 0.999 1.00 0.999 1.00 1.00 1.00 1.00 1.00

Table 4. Estimated power of the proposed test(n=25, p=1, two outliers)

magnitude of outliers

magnitude 20 30 40 50
of outliers significant level | significant level | significant level | significant level
0.1 0.05 0.01]0.1 0.05 0.01{0.1 0.05 0.01|0.1 0.05 0.01
20 0965 0943 0.938(0.995 0993 0988(0.998 0997 099}100 1.00 100
30 0966 0.955 0.944{099 0994 099 [0999 0998 0997|100 100 1.00
40 0969 0957 0950(1.00 0999 0995} 100 100 1.00 [ 100 100 1.00
50 0970 0962 0954]11.00 0999 0995| 1.00 100 100 [1.00 100 100
60 0973 0966 0958 1.00 100 09% |1.00 1.00 1007100 100 1.00
70 0975 0973 0963|100 100 09971100 100 100|100 100 100
80 0977 0975 0967100 100 09981100 100 100]1.00 100 100
0 0983 0977 0972(100 100 100{100 100 1007100 100 100
100 0991 098 0983{1.00 100 100100 100 100(100 100 1.00

continue(Table 4)

magnitude of outliers

magnitude 60 70 80 90
of outliers significant level | significant level | significant level | significant level
0.1 0.05 0.01(0.1 0.05 0.0110.1 0.05 0.0110.1 0.05 0.01
20 1.000 1.000 1.000{1.000 1.000 1.000|1.000 1.000 1.000(1.000 1.000 1.000
30 1.000 1.000 1.000]1.000 1.000 1.000|1.000 1.000 1.000(1.000 1.000 1.000
40 1.000 1.000 1.000/1.000 1.000 1.000;1.000 1.000 1.000}1.000 1.000 1.000
50 1.000 1.000 1.00011.000 1.000 1.000)1.000 1.000 1.000]1.000 1.000 1.000
60 1.000 1.000 1.000/1.000 1.000 1.000| 1.000 1.000 1.00 {1.000 1.000 1.000
70 1.000 1.000 1.000(1.000 1.000 1.000{1.000 1.000 1.000{1.000 1.000 1.000
80 1.000 1.000 1.000/1.000 1.000 1.000{1.000 1.000 1.000(1.000 1.000 1.000
90 1.000 1.000 1.000[(1.000 1.000 1.000/1.000 1.000 1.000{1.000 1.000 1.000
100 1.000 1.000 1.000{1.000 1.000 1.00 {1.000 1.000 1.000]/1.000 1.000 1.000

Finally, we consider the asymptotic distribution of the test statistics. This is obtained by
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the result of Monte Carlo simulation of 1000 replications under the null hypothesis. For
various sample sizes and the number of explanatory variables, Q-Q plots of the test statistics
are similar. So a Q-Q plot of the test statistic for sample size 100 in p=3 is shown only in
Figure 1. Though the extreme quantiles for the test statistic is the greater spread, all of them
appear to follow the normal distribution approximately.

Test statistics
1 1.2

1.0

0.9

T T T
-2 o] 2

Quantiles of Standard Normal

Figurel. Normal probability plot of 1000 test
statistics for size 100 in p= 3

4. Applications of the proposed test

In this section, the proposed test is applied to several data sets for the purpose of testing
and detecting outliers. The application begins by applying the test to the pilot-plant data
given by Daniel and Wood(1971). Rousseew and Leroy(1987) used these data to illustrate the
need for robust regression technique. Suppose now that one of the observations has been
wrongly recorded. For example, the x-value of the sixth observation has been recorded as 370
instead of 37. This error produces an outlier in the independent variable space. The data
appear in the Table 5. The results for the proposed test are in the Table 6.

Table 5. Pilot-Plant data set

index Extraction(x) | Titration(y) index Extraction(x) | Titration(y)
1 123 76 11 138 32
2 109 - 70 12 105 68
3 62 55 13 159 33
4 104 71 14 75 58
5 57 55 15 33 64
6 370(37) 48 16 164 88
7 44 50 17 169 89
8 100 66 18 167 38
9 16 41 19 149 84
10 28 43 20 167 88

*(37) is original data of pilot-plant data set
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Table 6. The proposed test applied to the contaminated pilot-plant data

. . . critical values
sample size observation selected proposed test statistics 001 0.05 o1
20 6 11.703 1.849 1.637 1.484
19 11 0.941 1.858 1.651 1.495

In the Table 6, the test is highly significant for observation 6 that wrongly recorded. When
the test is applied to the remaining 19 observations, null hypothesis is not rejected. For this
example, the proposed test yields a correct result.

The second application for testing and detecting outliers comes from the Brownlee(1965).
The data is well-known stackloss data set. We have selected this example because it is a set
of real data and 1t that
observations 1, 3, 4, and 21 were outliers. Some people reported that observation 2 was

is examined by many statisticians. Most people concluded
outlier. The data are shown in the Table7. The result for the proposed test appear in the
Table8. In the Table8, observation 4 is the most extreme followed by observation 21,
observation 1, observation 3 and observation 2. The test identifies obseravtion 4, 21, 1, 3 and
2 as outliers. When the test is applied to the remaining 16 observations, null hypothesis is not
rejected. Hence observation 13 is not a outlier. This result is the same to conclusion that
most people reported.

Table 7. Stackloss data

index | rate | temper—- | acid concen- | stackless [findex| rate | temper- | acid concen~ |stackless(
(x1) | ature(x2) | tration(x3) () (x1) |ature(x2) | tration(x3) y)
1 80 27 39 42 12 58 17 38 13
2 80 27 38 37 13 58 18 32 11
3 75 25 90 37 14 58 19 93 12
4 62 24 87 28 15 50 18 39 8
5 62 22 87 18 16 50 18 86 7
6 62 23 87 18 17 50 19 72 8
7 62 24 93 19 18 50 19 79 8
8 62 24 93 20 19 50 20 30 9
9 58 23 87 15 20 56 20 82 15
10 58 18 80 14 21 70 20 91 15
11 58 18 89 14
Table 8. The proposed test applied to the stackloss data
S e i observation proposed test Critical Values
ampie S1€ 1 selected statistics 0.01 0.05 0.10
21 4 2.685 2.304 2.204 2.101
20 21 2.895 2.334 2.246 2.121
19 1 2.367 2.359 2.296 2.231
18 3 2.9067 2.384 2.346 2.321
17 2 2.610 2.421 2.396 2.334
16 13 2.326 2.634 2.583 2.421
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Table 9 . Artificial data set of Hawkins, Bradu, and Kass

index x1 X2 x3 y index x1 X2 x3 y
1 10.1 19.6 28.3 9.7 39 2.1 0.0 1.2 -0.7
2 9.5 205 28.9 10.1 40 0.5 2.0 1.2 -0.5
3 10.7 20.2 31.0 10.3 41 34 16 2.9 -0.1
4 9.9 21.5 31.7 9.5 Y 0.3 1.0 2.7 -0.7
5 10.3 21.1 31.1 10.0 43 0.1 3.3 0.9 0.6
6 10.8 20.4 29.2 10.0 44 1.8 0.5 3.2 ~0.7
7 10.5 20.9 29.1 10.8 45 19 0.1 0.6 ~0.5
8 9.9 19.6 28.8 10.3 46 1.8 05 3.0 -0.4
9 9.7 20.7 31.0 9.6 47 3.0 0.1 0.8 -0.9
10 9.3 19.7 3.03 9.9 48 3.1 16 3.0 0.1
11 11.0 24.0 35.0 -0.2 49 3.1 25 1.9 0.9
12 12.0 23.0 37.0 -0.4 50 2.1 2.8 29 -0.4
13 12.0 26.0 34.0 0.7 51 2.3 15 0.4 0.7
14 11.0 34.0 34.0 0.1 52 3.3 0.6 1.2 -0.5
15 34 29 2.0 -0.4 53 0.3 70.4 33 0.7
16 3.1 2.2 0.3 0.6 54 1.1 3.0 0.3 0.7
17 0.0 1.6 0.2 -0.2 5 05 24 0.9 0.0
18 2.3 1.6 2.0 0.0 5 1.8 3.2 0.9 0.1
19 0.8 2.9 16 0.1 57 1.8 0.7 0.7 0.7
20 3.1 34 2.2 0.4 58 2.4 34 15 -0.1
21 26 2.2 19 09 59 16 2.1 3.0 -0.3
22 0.4 3.2 19 0.3 60 0.3 15 3.3 -0.9
23 2.0 2.3 0.8 -0.8 61 0.4 34 3.0 -0.3
24 1.3 2.3 0.5 0.7 62 0.9 0.1 0.3 0.6
25 1.0 0.0 0.4 -0.3 63 1.1 2.7 0.2 ~-0.3
26 0.9 3.3 2.5 -0.8 64 2.8 3.0 2.9 -0.5
27 3.3 2.5 29 -0.7 65 2.0 0.7 2.7 0.6
28 1.8 0.8 20 . 0.3 66 0.2 1.8 0.8 -0.9
29 1.2 0.9 0.8 0.3 67 16 2.0 1.2 -0.7
30 1.2 0.7 3.4 -0.3 68 0.1 0.0 1.0 0.6
31 3.1 1.4 1.0 0.0 69 2.0 0.6 0.3 0.2
32 05 2.4 0.3 -0.4 70 1.0 2.2 2.9 0.7
33 15 3.1 1.5 -0.6 71 2.2 25 2.3 0.2
34 0.4 0.0 07 -0.7 72 0.6 2.0 15 -0.2
35 3.1 2.4 3.0 0.3 73 0.3 1.7 2.2 0.4
36 1.1 2.2 2.7 ~-1.0 74 0.0 2.2 1.6 -0.9
37 0.1 3.0 2.6 -0.6 75 0.3 3.4 2.6 0.2
38 1.5 1.2 0.2 0.9

Let us look at an another example containing multidimensional artificial data. This data set
generated by Hawkins, Brau, and Kass(1984) and consists of 75 observations in four
dimensions. The first 10 observations are the bad leverage points and the next four points are
good leverage points. This data is listed in the Table 9. Hawkins, Brau, and Kass(1984)
mentioned that the M-estimator did not turn out the expected results because the first ten
bad leverage points were masked by the effected of good leverage points and the four good
leverage points were detected as outliers.

The classical standardized residuals, internally( #; ) or externally studentized residuals( ¢}),
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Cook’s distance(Di), DEFFITS, diagonal element of projection matrix, and Mahalanobis
distance (MDi) for the data set are shown in Table 10. The proposed test is shown in Table
11. In the Table 10, all diagnostics tool based on least squares method identified good
leverage points 11, 12, 13, 14 as outliers because the first ten bad leverage points were
masked by the effected of good leverage points. But in the Table 11, proposed test detected
bad leverage points 1, 2, 3, 4, 5, 6, 7, 8 9, 10 as outliers.

Table 10 The results for outliers diagnostics( #; ; Squared Mahalanobis Distance( MD),);
Standardized( 7;/s), Studentized( ¢;) and Jackknifed Ls Residuals( ¢(;); CD*(i); DFFITS)

inde | Ail0.107) pp,(7.82) ril S0 42500 | #(250 ((TlDZOé)z) DFFITS (0.462)
1 | 0063 | 3674 | 150 15 57| 0040 0.404
2 [ 0060 | 3444 | 178 183 1.86_ | 0053 0470
3 [ 0086 | 533 | 133 1.40 14l | 0046 0430
4 | 008l |_4971 114 119 119|003l 0352
5 | 0073|441l 1.36 141 142 | 0039 0.399
6 | 0076 | 4606 | 153 159 161 | 0052 0.459
7 [ 008 | 4042 | 2ol 208 | _213_|_ 0079 0575
8 | 0063 | 3684 | L7l 1.76 179 | 0052 0.464
9 [ o080 | 493 | 120 1.26 126 | 0034 0.372
10| 0087 | 5445 | 135 1.41 Lz | 0048 0.436
11| 0094 | 598 | -348 | -366 | -403 | 038 ~130
12] 0144 | 9662 | 416 | 450 | 520 | 081 2168
13 1100 | 7088 | 272 | 288 | 304 | 0254 ~1L065
14| 0564 | 40725 | 160 | 256 | 2671 | 2114 73030

Table 11. The results for the proposed test

ke s observation | proposed test Critical Values

Sample size | ected statistics 0.01 0.05 0.10
(s 7 3.606 1.407 1.344 1.291
74 3 3.446 1.413 1.346 1.293
73 8 3.301 1.419 1.349 1.294
72 2 3.419 1.425 1.350 1.295
71 10 3.358 1.431 1.351 1.296
70 5 3.130 1.437 1.353 1.297
69 9 3.093 1.443 1.358 1.303
68 4 2.859 1.449 1.363 1.309
67 6 2.458 1.455 1.369 1.315
66 1 2.083 1.460 1.374 1.321
65 53 0.878 1.464 1.379 1.330

The above examples demonstrate the performance of the proposed test and is unaffected by
masking and swamping effects.



346 Jinpyo Park and Heechang Park

5. Concluding Remarks

It is very important to test and detect the multiple outliers in linear regression. Several
diagnostic measures based on the resulting from the least squares estimate have been
proposed to identify the multiple outliers. However, the accuracy of diagnostic measures is
very suspect because these can be severely affected by the masking and swamping effects.
This inaccuracy can seriously affect their performance.

In this paper, we proposed the forward sequential test for testing and detecting the multiple
outliers. This was founded on a robust estimate of scale.

In principle, the forward sequential test set up a natural simple approach for identifying the
multiple outliers. However, if the forward sequential test is founded on the resulting from the
least squares estimate, it can be seriously affected by the masking and swamping effects. On
the other hand, if the forward sequential test is founded on a robust estimate of scale, like
the test proposed in this paper, the problem for the masking and swamping effects can be
overcome.

We proved that the proposed forward sequential test was not affected by the masking and
swamping effects through the Monte Carlo results and numerical examples. These suggest
that the proposed test provides a conservative and fairly powerful method for the detection of
the multiple outliers in linear regression.
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