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Goodness of Link Tests for Binary Response Data

In-Kwon Yeol)

Abstract

The present paper develops a method to check the propriety of link functions for
binary data. In order to parameterize a certain type of goodness of the link, a family
of link functions indexed by a shape parameter is proposed. I first investigate the
maximum likelihood estimation of the shape parameter as well as regression
parameters and then derive their large sample behaviors of the estimators. A score
test is considered to evaluate the goodness of the current link function. For
illustration, 1 employ two families of power transformations, the modulus
transformation by John and Draper (1980) and the extended power transformation by
Yeo and Johnson (2000), which are appropriate to detect symmetric and asymmetric
inadequacy of the selected link function, respectively.
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1. Introduction

Suppose that Yi,..., Y, are independent Bernoulli random variables with success probability
#;=P(Y;=1). In generalized linear models, it is assumed that a monotone and differentiable

function of p; satisfies a linear model

gu)=x! B
where g( +) is called the link function. The link function describes the dependence of x; on
the linear predictor 7,= xJ 8 for a particular regressor x,—=(x,1,...,x,p)T, where
B= (4, ...,ﬂp)T is the unknown parameter vector to be estimated.

To ensure that g is restricted to the interval [0,1], a cumulative probability distribution

p=g (9= fjmf(s) ds,
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is usually employed. The density function As) is called the tolerance distribution. When the
tolerance is logistic distribution, the corresponding link is logit, g(x)= log(x/(1— ). The

probit link g(z)= @ ~!'(x) and the complementary log-log link g{x) = log(—log(1 — 1)) are
respectively derived from normal and extreme value tolerance distribution. Although the
determination of the link function 1s an important process in modelling, see Wedderburn
(1974), the choice of link is usually a matter of taste. Hence, the adequacy of the selected
link cannot be taken for granted and should, if possible, be checked.

There are basically two ways of testing the goodness of the link for binary data. One is to
extend the link function g{(x) to a parameterized form g{u,A) which includes some standard
links such as logit, probit, and complementary log-log for a specific value of A and then to

make inferences about the value of A. Several authors including Pregibon (1980),
Aranda-Ordaz (1981), Guerrero and Johnson (1982), and Stukel (1988) introduce a generalized
links and then choose the best link from the class generated by generalizations. A second

procedure merely expands the link in a Taylor series in the linear predictor » and leads to

the inclusion of a term in /7;2 in the linear predictor. A score test is then calculated.

In the literature about generalized link functions, the link to be tested should be included in
its own link class. This article provide a method of testing the propriety of an arbitrary link
function which there is good grounds for selecting or not. As usual ways, I first consider a
class of link functions indexed by a single shape parameter, study the estimation of the shape
parameter as well as regression parameters, and investigate the asymptotic properties of the
estimators. In section 3, a score test and a bootstrap test are considered to examine the
adequacy of the current link function. When the selected link functions is not proper to fit
the data, the class may provide an alternative link. For illustration, two well-known data sets
are employed in section 4.

2. GENERALIZED LINK FUNCTIONS AND ESTIMATION

Let g(-) be the selected link function to fit the data. Although the link function is
carefully chosen, the data may often indicate that the selected link is unsuitable. The general
approach to detect unsuitableness is to use the tests based on the deviance statistic or the
Pearson chi-squared statistic. However, these tests are generally not very powerful even
though the methods are quite popular. In order to find more powerful indication, I first
consider a family of generalized link functions. The proposed class of link functions takes the
form

oA, g(w))=19=xTB and p=g ¢ 1A, M. (1)

1

I write h=g  and ¢=¢ ~1 for convenient notation. Throughout this paper, 1 assume that
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¢(A, ») has following properties:
[P1] ¢(A, 7) is strictly increasing nonlinear function of 7
[P2] ¢(A,n) is continuously differentiable in A and 7
[P3] for a specific value A=Ay, Ay, 7)=17.
John and Draper(1980), Stukel (1988) and Yeo and Johnson (2000) introduce transformations
satisfying properties above.
To satisfy the usual identifiability constraints, I now assume that if ¢( -, - ) is the true
link function, then there exists a unique set of parameter values

0=(91,...,(9,,+1)T=(A,Bl,...,ﬁp)T such that (1) holds for all x in the covariate space.

Then, the log-likelihood functions for # observations is

L 0 3) = 2 {vilog (il 0)+(1—y)log(1— sl 6)))

— 2 {vilog (M(#(2, =T B))+(1—y)log((1—h(s(A, =T B))).

1=

Let v/,( 8. y) be the gradient of the log-likelihood function evaluated at #= 8., and let
v21,( 8. ¥) the observed information matrix at = @,. Then the score function S, & y)

for @, is the k-th element of V/,( 8 y) and the maximum likelihood estimate (MLE) is
obtained by solving the iterative equation

— —— ———— —1 —

O (min= 0(m)"[‘721n( 0 (m y)] VI 0wl y,
where 79\(;,) is the m-th iterative MLE. Replacing — v 2/,( 8| y) by the Fisher information
matrix i, @) =E[vi,( 68l YNV I8 Y)1=—E[vi, 6 Y)], I may also obtain the
MLE by the method of scoring. Let V% /,( 8] ) be the (kD-th entry of v?,(6ly) and
2P 0)=0aul 6)/36,=dh(¢(A, xI B))/36,. Then I evaluate the (k})-th entry of i,( ) as

)
=1 p O —p,(0)

iy =EIS{ 0l Y)S( 8l I=—E[V% (6l V]= 2

Example 1. (Logit) Let g(u)=log(u/(1—p)). Then, ¢ ®P( @)= ¢ P, 7 u( )(1—ux( 6)

and the (k1)-th entry of the Fisher information matrix #,( 8) is given as

ini= 230 P79 PR 1)l O - (). O

Example 2. (Probit) Let g(u)=@ '(x). Then, x®( 6)=¢®(A, n)d(¢(4,7) and the
(k)-th entry of i,( ) is
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3 DA, 109 (A, 7084, 20) (A, 7))

Fni= T 0(g0, 1)L — O(9(A, 7)) .

Example 3. (Complementary log-log) Assume that g(u)=Ilog(—log(l—2)). Then,
1 PO =9 PR, nexplHA, 7)— exp(¢(A, 7)] and the (k1)-th entry of i,( ) is

s ¢ P4, 29¢ (A, n)exp 2L ¥4, 7,) — exp (¥4, 7)1}
BT & exp(—exp(@(A, 2))[1— exp(—exp(¢(4, 7,))]

O

Suppose that the following conditions are satisfied:
[C1] the parameter space € is a compact subset of R’ +

[C2] for all 7, x;& X where X is a compact subset of R”.
Then, an application of Rubin’s theorem (1956) with the continuity ¢ ensures that for 8 6,
}tgrg{maxn_lln( 8 Y)—maxn 'E[/( 8 DI}=0
with probability one, where
ELL( 8 V]= 35 (1 O)log e 0)+(1— l O)log(L—pui ).

Suppose that /y( )= £i_>rr°1°n—lE[ln( A Y)] exists and @p=argmax/( 8 for O= 6.

Then, the MLE ’79 is a strongly consistent estimator of @,. Further conditions are required
to show the asymptotic normality of "o
[C3] @y is an interior point of 6,
[C4] both % and ¢ with respect to @ are twice continuously differentiable,
[C5] }’Ln}on ~1 4,0 @) exists and is positive definite.
If conditions C1 - C5 hold, then
iY2(70.)(70— 60) ~ N,.i(0, I), 3)

where i) is the square root matrix of i, and /5.=a,,/\0+(1—a,,) 0, for a,=[0,1].

3. THE GOODNESS OF LINK TESTS

Note that, for a specific value A=A, ¢(Ag, 7)= 7. Hence, the adequacy of the current link
g( - ) can be represented by the hypothesis Hj : A= A;. Although Wald test using (3) and

the likelihood ratio test can be used to test the null hypothesis, I only focus on the score test
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which is an appealing way to test A of interest parameter with nuisance parameter £
because of computational advantages. Alternative tests which detect global lack of fit of
parameteric model for the link function can be found in, for instant White (1982), Su and Wei
(1991) and Cheng and Wu (1994). Cox and Snell (1989) include techniques for testing the

parameter without nuisances in binary response models.
Let S 0l y) denote the px1 vector with k-th element S,4;( 8l ¥) and denote the
T)T

partition of the scores V7, 8l y)=(S;( 0l y), Sz 8l ¥)*) . The partitioned submatrices of

the information matrix for S;( 8l Y) and S 4 8| Y) are given as

iu( 0)=EL(S( & Y),

50 ) =ES:( 8 1S, 8 YT,

i 0)=E[S, & Y)S,( 8
Here, each entry of the submatrices can be evaluated with E[S,( & Y)S/{ @ Y)] given in
(2).

Let B, be the MLE of B under Hy: A=A, and write 8= (4, /B\(;r) T Under C1 -
C5, Si( /501 Y) is asymptotically normally distributed with mean 0 and variance
300 = ia( )~ i 0p) iz ("6 i 6).

The existence of the score function in the neighborhood of A= Ay is due to the continuity of

the derivatives of the ¢ in A. The score statistic for testing Hy A=A, with a nuisance §#
is given as

_S{(8) ¥)’

ey
The asymptotic null distribution of T is x2 with one degree of freedom and the test based

on 7% is the asymptotically locally most powerful unbiased test (see Bhat and Nagnur, 1965).
However, the exact distribution of score statistic for even moderately large samples may be

quite different from xz distribution. Moreover, the score test needs to estimate the variance

2( 8y). To address these problems, I suggest a bootstrap technique (see Yeo and Johnson,
1998).

4. EXAMPLES

In this section, I illustrate my method by two examples with following two families of
power transformations;
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((7+1)*=1)/4, =0, 7>0,

D _ | log(n+1), A=0,7=0,
A D=L Y DA =1)/A, 420,70,
— log(—n+1), A=0(, <0,
((p+1*=1)/2a, %0, 7=0,
v/, — | log(n+1), A=0,7=0,
A= R D D@ — D), A%2.1K0,
— log(—7+1), A=2, 7<0.

The function ¢]D is known as the modulus transformation introduced by John and Draper
(1980) and ¢ 7 is the extended power transformation by Yeo and Johnson (2000). Note that
both </J]D and ¢ YJ' reduce to the identity function when A=1. Hence, testing hypothesis

Hy A=1 can represent the test of the goodness of the selected link. Since, as depicted in

Figure 1, gb]D changes from convex to concave as # changes sign, it can be applied to detect

the under-estimation on one tail and the over-estimation on the other tail. Antithetically, ¢
is concave in 7 for A<1 and convex for A>1 so the corresponding curves are asymmetrically
pulled down in the tails for A<1 and pushed up fir A>1. Thus, it might be used to detect
either under-estimation or over-estimation in both tails.

Although this goodness of links test can be applied to any types of link functions, logit,
probit and complementary log-log links are tested in following examples. S-plus on a IBM-PC

——

was run to generate the bootstrap samples Y} and the bootstrap estimators 08 were

computed by glm function with the binomial family in S-Plus. For each example, the
bootstrap critical values based on 500 samples were calculated at the 5% level of significance.

4.1 Mortality of adult beetle after exposure to CS,

Data of adult beetle mortality after exposure to gaseous carbon disulphide, CS,, reported by

Bliss (1935) were investigated by Prentice (1976), Aranda-Ordaz (1981) and Stukel (1988) who
proposed generalized models for binary response data. According to these works, analyses on
an asymmetric scale for these data are suggested.

Table 1. Score Tests and Bootstrap Critical Values for Beetle Mortality Data.

) T(p-value) Sy( /50) Bootstrap critical values
Logit  ¢” 0623 (0.430)  1.810 ( -4.441, 4135)
oY 8.038 (0.006) 17.758 (-12.489, 12.038)

Probit ¢”° 0.234 (0.628) 0.884 ( -3.343, 3.384)
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Figure 1. Plots of (/)]D and ¢ Y and the corresponding logistic curves for A = 05
(broken line), 1.0 (solid), 1.5 (dotted).

oY 6.806 (0.009) 12562 ( -9.078, 8.896)
Cloglog ¢”° 0.833 (0.361) -1611 ( -3.486, 2.999)
oY 0.018 (0.893) 0.634 ( -8.964, 8965)

Table 1 shows that for logit and probit, neither the score test nor the bootstrap test by
¢ Y retains the null hypothesis A=1. However, both the score and the bootstrap test for the
complementary log-log link function do not give the evidence of lack of fit, when ¢]D and

¢ ¥/ are used. This confirms Aranda-Ordaz’s (1981) result that the complementary log-log
In fact, Yeo and Johnson (1998) show that the

oY with A=1.48 provides the better fit than the

link is the most appropriate for these data.

generalized logistic link using

complementary log-log link.
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4.2 Age of menarche in Warsaw girls

Milicer and Szczotka (1966) analyzed data determining the age of menarche of a sample of
3918 Warsaw girls in 1965. Aranda-Oradaz (1981) claimed that for these data the probit scale
is, on practical grounds, the best choice within the class suggested by him. Sometimes a
logarithmic transformation of the explanatory variable leads to proper description of data with
a symmetric tolerance distribution. Thus, I also consider the models which use the logarithmic
scales of age instead of the original values of age. The data are found in Aranda-Oradaz
(1981) and Stukel (198%).

Table 2. Score Tests and Bootstrap Critical Values for Age at Menarche Data.

¢ T%(p-value) S;( 6,)  Bootstrap critical values
Logit ¢ 3.333 (0.068)  13.357 (-13.684, 13.837)
oY 4282 (0.039) -39.589 (-35.129, 33.243)
¢ Px 2862 (0.091) 12692 (-16.021, 13.786)
¢ 2.287 (0.130)  -29.309 - (~38.614, 39.740)
Probit ¢”° 0064 (0.801)  -1.254 (-14.033, 13.458)
oY 7995 (0.005)  -37.599 (-26.558, 27.527)
¢ 0% 0.034 (0.853) 0.949 (-17.123, 12.174)
¢« 1.094 (0.296) -14.012 (-26.665, 27.025)
Cloglog ¢7° 21.347 (0.000)  31.290 (~24.176, 22.493)
¢ 112665 (0.000) -146.734 (-30.756, 35.836)
¢Px 11991 (0.001)  27.852 (-20.833, 19.737)
¢ 7% 62586 (0.000) -116.275 (-29.833, 31.377)

* denotes that the logarithmic transformation of age is used.

Table 2 shows that none of link functions is appropriate to the original scale of age when
¢ Y s employed. In this case, other links should be used to obtain the proper fit and the
generalized link function, given in (1), with ¢1YJ may be applied When logarithmic
transformed ages are used, the probit is recommendable. Guerrero and Johnson (1982) obtained

a remarkable improvement using a probit mode! where the Box-Cox transformation is taken
to age and a normal distribution is assumed for transformed age.
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5. CONCLUSIONS

The choice of the link function in the analysis of binary data is usually a matter of taste.
In this paper, a generalized link function for testing the propriety of the selected link function
has been proposed. The advantage of the proposed method is that an arbitrary link function
can be tested, while other generalizations tend to restrict the link function to be tested to
special cases such as the logit, probit and complementary log-log link function. For a link
function g(u), the proposed model takes the form ¢(A, g(x)) =7 where ¢ is a nonlinear
function and reduces to @(Aq, g(1)) = g(y) for a specific value A=A, This implies that a
nonlinear relationship between the link function and the linear predictor is established and

then, by testing Hj, : A=A, that is, linearity dependency on the predictor the adequacy of

the link function g is checked. Due to computational advantages, the score test and the
bootstrap test based on the score function are calculated. I recommend two families of power

transformations, g/J]D and ¢ v , which are appropriate to detect the bias of the selected link
function, when they are employed in parallel, as well as satisfy the properties [P1]-[P3].
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