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Semiparametric Bayesian Multiple Comparisons
for Poisson Populations
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Abstract

In this paper, we consider the nonparametric Bayesian approach to the multiple
comparisons problem for I Poisson populations using Dirichlet process priors. We
describe Gibbs sampling algorithm for calculating posterior probabilities for the
hypotheses and calculate posterior probabilities for the hypotheses using Markov chain
Monte Carlo. Also we provide a numerical example to illustrate the developed
numerical technique.
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1. Introduction

Poisson population occurs quite frequently as a model for many random phenomena which
require a count of some sort. For example, one might consider the number of electronic
components that fail per unit time, the number of radioactive particles emitted per unit time,
or the number of telephone calls coming into a telephone switchboard per unit time.

In this paper, we consider I Poisson populations with means (8, &,,-:+,8;). The research

for Poisson populations was provided by many authors. Ghosh and Parsian(1981) computed
Bayes minimax estimation of multiple Poisson parameters. Albert(1981) considered the
simultaneous estimation of means from independent Poisson populations. Albert(1983) obtained
a pseudo-Bayes confidence region for I Poisson means. Albert (1985) discussed the
simultaneous estimation of Poisson means under exchangeable and independent models. Ngai
and Stroud(1994) provided the hierarchical Bayes simultaneous estimation of Poisson means.
The multiple comparisons problem(MCP) is to make inferences concerning relationships
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among the @'s based on data. In many cases, the multiple comparisons for Poisson
populations is often important in statistical analyses. But, the study about the MCP of I
Poisson population means has not been seen yet, in part because of the difficulty in handling
the computations. So, we introduce Bayesian approach to resolving the MCP of I Poisson
population means. But assessing a prior distribution and formulating a likelihood in the

presence of large number N of hypotheses Hy: @)= 0y=--=8, H;: §;+0;=--=§; and
so on up to Hy: 0;#64%---+0; make the Bayesian approach difficult, since the number of

hypotheses increase exponentially as the number of I of populations increases. Thus the MCP
of I Poisson population means is tedious for moderate I and it is practically impossible for
large I. Hence, we need to circumvent resolve this problems.

In this paper, we consider the nonparametric Bayesian approach to the multiple comparisons
problem for I Poisson populations using Dirichlet process priors(DPPs) introduced by
Ferguson(1973). And we develop a numerical technique to calculate the posterior probabilities
of the hypotheses based on a hierarchical nonparametric family of DPP. Also we provide a
numerical example to illustrate the developed numerical technique.

2. Mixture of Dirichlet Process Model

The DPP G is determined by two parameters: a distribution function Gy( - ) and a positive
scalar precision parameter @. Here Gy( - ) defines the location of the DPP. So Gy( - ) is

called by prior "guess” or baseline prior. The precision parameter e« determines the

concentration of the prior for G around the prior guess Gy, and therefore measures the
strength of belief in G;. By way of notation we write G ~ IXG| Gy, @). For large values
of a, a sampled G is very likely to be close to Gy For small values of @, a sampled G is
likely to put most of its probability mass on just a few atoms. Consider I Poisson populations
with means (8, 8,,---,08;). Observations Y=(Y,, Y, -, Y;) are available on these

populations, where Y= (yzl,’“,y,-,,,.) is  m;X1 wvector of conditionally independent

observations on population ¢, :=1,2,---,I; j=1,2,-,n; and éln,-:n. Then the
=

probability density function of y; is

8, exp(~ 6,
f(yi)" 91'): exg( ) .
yv-

The MCP of I means is to make inferences concerning relationships among the & based on

Y. Let O={8=(6,,0,,-,0): 6,R, i=1,2,---,I} be the I-dimensional parameter

2.1)

space. Equality and inequality relationships among the &'s induce statistical hypotheses that



Semiparametric Bayesian Multiple Comparisons for Poisson Populations 429

are subsets of O, ie, Hy: 6)=1{60:6,=6,=--=8,}, H : 6,=1{0:6,+0,=--=0} and
so on up to Hy: Oy={6;6,#0,%-+0;}. The hypotheses H, 8,, r=0,1,2,---,N, are
disjoint, and Ul;l:oi,-—— e .

For the prior distribution of I Poisson population means, 6,'s, we use the family of DPPs
introduced by Ferguson(1973) and extended to mixtures of DPP by Antoniak(1974).

We assume that the 6,'s come from (G, and that G ~ D(G| Gy, @). This structure results

in a posterior distribution which is a mixture of Dirichlet processes (Antoniak 1974). From
Antoniak(1974)'s results, the joint posterior distribution has the form

a’Go(ei)‘*” .3(3i| )
6:| Y < I:Ilﬂ vil ) a+?i1 , (2.2)

where &(8;| 8,) is the distribution which is a point mass on 0,.

Also the conditional posterior distribution of 8, is given by

01 0y, kFi, Y o< qGy(8; | y)+ ;i(Iké\( 0:1 6y, (2.3

where Gu(0;| y;) is the baseline posterior distribution, ¢g o af A y: | 6) dGy(8),
agr < Ay;1 6y and 1=g;+ ;iQk'

The elements of ® themselves behave as described by (2.3) and so with positive
probability, they will reduce to some p<I distinct values.

Let superscript * be distinct values of @'s. Then any realization of I parameters &,
generated from G lies in a set of p<I distinct values, denoted by 6 = (6], 8;,,6;).

Definition (Configuration) The set of indices S={S;,-::,S;} determines a one-way
classification of the data Y= { Vi, y;} into I" distinct groups or clusters; the n; is the
number of the set {{: S;=;} observations in group j share the common parameter value
0;. Now, define I; as the set of indices of observations in group j; That is, I;= {£S;=j}.
Let Y (3={Y;: S;=7} be the corresponding group of #»,= g;in,' observations.

Therefore, there is a one-to-one correspondence between hypotheses and configurations.
And the required computations are reduced by the fact that the distinct §;'s typically reduce

to fewer than I due to the clustering of the #,'s inherent in the Dirichlet process (Antoniak

1974). Then, the above formula can be rewritten as:
0.1 6ukti, 3 o= aiGH6: | 9D+ T miaid(0,1 6, .9
with ¢ < Ay;| 8y, and 1=gqp+ znqu Besides simplifying notation, the cluster

structure of the @; can also be used to improve the efficiency of the algorithm.
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3. Posterior Sampling In Dirichlet Process Priors

We take a baseline gamma prior G, which the #; are independent gamma with parameters

A;={A1;, A5}, where specified shape parameter is A,; and unknown scale parameter is A,

Extending to a Dirichlet process analysis as outline in the above description results in

yi | 8; ~ Poisson(y; | 8y, 3.1
8;:1 G~ G(6;] 4, (3.2)
G| Gya ~ D(G| Gy, a), (33)
Gol 4i ~ Gamma(A ;4 ,), (34)
Agi ~ Gamma(c, d). (35)

Now the choice of the precision parameter @ in Dirichlet process is extremely important for
the model. Escobar and West(1995) and Liu(1996) considered various methods for the choice of
a. Here, we consider the gamma prior for @ with a shape parameter a and scale parameter
b, that is, @ ~ Gamma(a, b). Then the Gamma(a, b) is to be the reference prior by a — (
and b — 0.

By Escobar and West(1995), we have access to a neat data augmentation device for
sampling a as followings;

al 9, I" ~ n,Gamma(a+T,b—log(n)+(1—n,)Gamma(a+I —1,b—log(n)), (36)

7l e, I" ~ Beta(a+1, D), (3.7
where the weights 7, are defined in odds form by

7[71 — a+F—1
(1-7z,) Kb—log(n) -

These distributions are well defined for all gamma priors, all #» in the unit interval and all

I'1.
Since G4(8;| y,) is the baseline posterior distribution, G,(8; | y;) o Poisson(y;| 6;)x

(3.8)

Gamma(A,;, A5). Hence, from (2.3), the conditional posterior distributions are given by

6," y, Ok, k#:l.,a,_/i_l‘ ~ qOGamma(/l 1,'+ gly ,',',/12,‘+ n,)+ ;iqkt?(dﬁ,-l 012) (39)

Also, the above formula can be rewritten using the configuration notations:
n
6;1 v,S, A" ~ Gamma( ;i;::ly it A, ;jn,+ A7), (3.11)

Here since ¢ o< afff( ;|6 dGy(6), g, o< Ky;|8,) and 1=d0+ ;iqk., qp and g,

are given as following, respectively.
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Ay

Z it A= D! ” , 3,
e ) ()

qy < a

P
N g
Hyraa,—pr b wral i

n
and, for each k>0, ¢, < 8, 'g exp(— 8./ ]lly,-,-!.

al 2,I" ~ & ,Gamma(a+T,b—1log(n)+ (1~ x,)Gamma(a+ I —1, b—log(n)), (3.12)

7l a,I" ~ Beta(a+1,D, (3.13)

Ayl v, 8 ~ Gamma(A ;+c, 6"+ d), (3.14)

Gibbs sampling proceeds by simply iterating through (3.9) - (3.14) in order, sampling at
each stage based on current values of all the conditioning variates.

The configuration gives the equality and inequality relations among the §@’'s, which

correspond to the partitions on the parameter space ® and in turn to the hypotheses of
interest(multiple comparisons).

To estimate the posterior probability of a hypothesis H, from a large number(L) of sample

draws, use
PH,| ¥ ~ L S, (3.15)
where 6 s(H,) denotes unit point mass for the case where /th draw of S, that is, S,
corresponds to H,.
The probability of equality for any two @'s can be calculated from the posterior
distributions on hypotheses, P(H,| Y), »r=1,2,--,N. This can be achieved by adding
probabilities of those hypotheses in which the two 8; and 6; are equal. That is

P6;=6;1 Y) = % 2155,(5,: 0,)= glP(Hr‘ Y)ou(6:=29), i+, (3.16)
where 85(8;=6;) and &y(6;,=86;) denote unit point mass for the case where S, and

H, indicate 8;= 0,, respectively.
4. Numerical Example And Conclusion

In this section, an artificial data are used to illustrate the multiple comparisons for 4

Poisson populations and sample size of 4 from each populations with 6, = 6,=3.0, 8;=8.0
and &,=1.0, respectively. That is I=4 and »n;=4 for all i=1,2,--:,I Then true hypothesis
is Hpp: 0,=0,+60;#6,. In this case, the number of possible hypothesis is 15. The

observed summary statistics for each populations are given in Table 1.



432 Jang Sik Cho, Dal Ho Kim and Sang Gil Kang

Table 1. The observed summary statistics for each populations

Populations 1 2 3 4
3 11 12 3 3
~
M.LE. 2.75 3.0 7.75 0.75

For the precision parameter @, we consider three priors: Gamma(1.0, 1.0), Gamma(0.1, 0.1)
and Gamma(0.01, 0.01). The latter prior is fairly noninformative, giving reasonable mass to both
high and low values of a. But, the Gamma(1.0, 1.0) prior favors relatively low values of a.

Table 2 give the the calculated posterior probabilities for each of 15 possible hypotheses
approximated by the Gibbs sampling algorithm using 10,000 iterations with 5000 burn-in
iterations and 5 replications. The hypothesis &, = §,#03+8, has most large posterior
probabilities 0.4404, 0.4398 and 0.4101 for each prior of the precision parameter a. This
suggests that the data lend greatest support to equality for 6;, 6, and &5 and &, being

different from the others. And the hypothesis 8,= 6,= 6,# 63 has secondly large posterior
probabilities 0.4092, 0.3565 and 0.2632 for each prior of the precision parameter a.

Table 2. Calculated posterior probabilities for each hypothesis

Hypothesis Gamma(1.0, 1.0) | Gamma(0.1, 0.1) |Gamma(0.01, 0.01)
6,=0,=0;= 6, 0.0006 0.0042 0.0158
0,=0,= 0% 6, 0.0325 0.0231 0.0186
0,=0,= 6,#04 0.4092 0.3565 0.2632
6= 0% 0;= 6, 0.0000 0.0000 0.0000
6, = Gy 0;+ 0, 0.4404 0.4398 0.4101
0= 03= 0,0, 0.0000 0.0000 0.0000
6,= 63+ 0,= 0, 0.0017 0.0011 0.0006
6, = 63+ 6,0, 0.0033 0.0035 0.0044
G,= 0,#0,= 06, 0.0061 0.0055 0.0040
)= 0,7+ 0,+ 6, 0.0242 0.0267 0.0260
0,0, = 0;= 6, 0.0000 0.0000 0.0001
0, 6,= 636, 0.0091 0.0099 0.0077
0,% 6, = 0,40, 0.0279 0.0271 0.0264
01+ 8,+6;= 0, 0.0000 0.0000 0.0000
017 0,7+ 05+ 0, 0.0451 0.1025 0.2229
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Table 3 indicates the pairwise posterior probabilities for equality of pairs of §&s. The
hypothesis for 6, = 8, has most large posterior probability(0.8827, 0.8236 and 0.7078) for each
choices of precision parameter. This suggests that there is strong evidence in the hypothesis
for 61 = 02.

Table 3. Pairwise Posterior Probabilities

Hypothesis Gamma(1.0, 1.0) | Gamma(0.1, 0.1) |Gamma(0.01, 0.01)
6,= 6, 0.8827 0.8236 0.7078
6,= 0, 0.0380 0.0320 0.0396
6,= 6, 0.4601 0.3929 0.3090
Gy =03 0.0483 0.0427 0.0463
G,= 8, 0.4594 0.3889 0.3062
;= 6, 0.0007 0.0042 0.0160

Until now, we have considered the problem of developing a Bayesian multiple comparisons
for means of I Poisson populations. As an alternative to a formal Bayesian analysis of a
mixture model that usually leads to intractable calculations, the DPP is used to provide a
nonparametric Bayesian method for obtaining posterior probabilities for various hypotheses of
equality among population means.

An extension of the method to the MCP for the another populations would be accomplished
straightforwardly. The research topics pertaining to the extension of the method and the
examination of its performance are worthy to study and are left as a future subject of
research.
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