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On Copas’ Local Likelihood Density Estimator

W. C. Kim, B. U. Park! and Y. G. Kim?

ABSTRACT

Some asymptotic results on the local likelihood density estimator of Co-
pas (1995) are derived when the locally parametric model has several pa-
rameters. It turns out that it has the same asymptotic mean squared error
as that of Hjort and Jones (1996).
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1. INTRODUCTION

Copas (1995), Hjort and Jones (1996) and Loader (1996) have developed local
likelihood procedures for density estimation. The idea is to fit a parametric model

f(-;0) locally at the point z of interest by

where 0§ = 5(3:) is a maximizer of the local likelihood. For a suitably chosen
local likelihood, the resulting estimator can enjoy the efficiency advantages of
parametric inference as well as the adaptivity of nonparametric models. For
example, consider the normal parametric model f(t,0) = (21 62)71/? x exp{—(t—
61)?/26,}. For a given point of interest z, the local likelihood procedure assumes
that this model is true only in a neighborhood of the point z. With a wide
neighborhood it is close to the parametric approach based on the normal model

while with a narrow one it is nearly nonparametric.
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Let Xi,...,X, be a univariate random sample from the distribution with
unknown density f(-). Hjort and Jones (1996) and Loader (1996) have proposed
the local likelihood

LS KK — 0) Tog S (X530) — [ Kt~ )f(t:6) (11)
=1

where Kp,(u) = K(u/h)/h, K is a kernel function and the scale parameter h is
the bandwidth controlling the amount of smoothing. With the normal parametric
model and the standard normal kernel function K(u) = (27) Y2 exp(—u?/2) it

equals, being multiplied by V27 h,

I T s s LD

T — 2
~h (B + h?)~1/? exp{ — -2_((92—5125)}

When ~ — oo, the local likelihood is identical, in the limit, to the parametric
global likelihood. On the other hand, when h is small, it produces an esti-
mator which is very close to the fully nonparametric density estimator f(z) =
n~t3" | Kp(X;—=). This is because when h ~ 0 only those X;’s which are close
to x can have significant contribution to the likelihood so that one can replace,
in the limiting situation, both of (X; — 61)2/260s and (z — 61)%/2 (6, + h?) by
(z — 61)%/265.

The local likelihood (1.1) was motivated by a locally weighted version of the
Kullback-Leibler distance from f to f(-;8),

Jiowe{ FE - | [f(t) g { 795 |~ L0 - f(t;9)}} at

Loader (1996) concentrates mainly on approximating log f(z;#) by polynomials,

and Hjort and Jones (1996) considers more general local models. Hjort and
Jones (1996) have shown that the rate of convergence of the resulting estimator
depends on the number of parameters and not on the particular form of the

locally parametric model.
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On the other hand, Copas (1995) worked with the local likelihood

—th i —x) log f(X;;0)

+{1 - —th ; } log Br(6) (1.2)

where wp(u) = Kp(u)/Kp(0) and Br(8) = 1 — [wp(t — z)f(¢;0) dt. With this
local likelihood, Copas obtained the asymptotic mean squared error of the re-
sulting estimator when 6 is a 1-dimensional parameter. Copas’ local likelihood
(1.2) was motivated by artificial censoring models in which X; is only observed
with probability w(X;), otherwise censored. It is interesting to note that, under
such censoring mechanism, the Kullback-Leibler distance between models with

densities f and f(-;8) is given by

[ om0 108 {%} dt

+{1—/w(t)f(t)dt}log{l_ffww (t;0 dt}

an empirical version of which motivates the local likelihood (1.2).

Recently, Eguchi and Copas (1998) produced an interesting study of these
two local likelihood methods for large h. In fact, they set the two methods in. a
slightly wider context by giving a more general form of local likelihood density
estimation with the two proposals as special cases. The remaining question is
what happens for small h. In particular, it is intriguing to know whether the
two resulting local likelihood density estimators based on (1.1) and (1.2) have
the same small A asymptotyic properties. The purpose of this paper is to answer
this question when the locally parametric model has several parameters, and the

result shows that the answer is affirmative.

2. ASYMPTOTIC PROPERTIES

In this section, asymptotic properties for Copas’ (1995) local likelihood den-

sity estimator will be derived when the locally parametric model f(-;8) =
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f(-;61, -+ ,0p) has several parameters. The results will be obtained under the

following assumptions :
(A.1) K is a symmetric probability density with compact support ;

(A.2) f(t;6) and f(¢) have bounded continuous (partial) derivatives up to order
6;

(A.3) The components uig(t), - -, upg(t) of ug(t) = dlog f(t;0)/00 are function-
ally independent for any 6.

Copas’ local likelihood density estimator is given by

falz) = f(2;0n) (2.1)

where 0, = 0,(z) is a maximizer of the local likelihood Ly (6) in (1.2) or equiva-

lently a solution to the equation

)
=5Ln(8) = 0. (2.2)

At this point it should be mentioned that, as in L, (6), the dependence on z, the

point of interest, will be suppressed whenever there is no confusion.

Remark 1. Since 8, = é\n(:z) depends on z, the estimator defined at (2.1) may
not integrate to 1. To obtain a bona fide density we may divide it by its integral
over the whole real line. It is easy to see that the asymptotic variance of the
scaled density estimator is the same as the unscaled one. The asymptotic biases

are different in constant factor but are same in order of convergence.

The solution 6, to the equation (2.2) is expected to get closer to a solution

0y, = 0r(x) to the equation
e}

96

as n grows. In fact, arguments analogous to the maximum likelihood estimation

EL,(8) =0, (2.3)

can be applied to get an expansion of ’9\” under the following assumptions :

(A.4) Expectations and differentiations of L, (#) with respect to 6 can be inter-
changed ;
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(A.5) The solutions 6, and 6, to the equations (2.2) and (2.3), respectively,
exist uniquely, and the third order derivatives of L, (6) are bounded in a
neighborhood of 8.

These assumptions are stronger than necessary, and some explic‘it models
satisfying these are given in Hjort and Jones (1996). Under these assumptions,
it is not difficult to observe that

On — 0h = —{E L (05)} " Ln(0n) + Op((nh) ™) (2.4)

as n — 00, h — 0 and nh — oo where - denotes the differentiation with respect
to 6. Thus the next result follows from (2.1) and (2.4) :

Theorem 1. Let x be an interior point of the support of f. Then under the
assumptions (A.1)~(A.5), we have

Fu(z) = f(@;61) + (nh) 20(2) Zo + O((nh) ™)

asn — 0o, h — 0 and nh — oo where Z, asymptotically obeys a standard normal

distribution and

o2(z) = { f(z) [ K*(2) dz ifp=10r2
f(z) f(ﬂ?ZZ - M‘4)2K2(Z) dz /(g — ,u%)2 ifp=3 or4,

with p, denoting the r-th moment of K, i.e. pu, = [2"K(2)dz (r=1,2,---).

The asymptotic variance in the above result is exactly the same as that of
Hjort and Jones’ (1996) local likelihood density estimator. In fact, even the
asymptotic bias coincides with the Hjort and Jones’ estimator as in the next

result :

Theorem 2. Let x be an interior point of f. Then the following identities hold
for bp(z) = f(x;0n) — f(z) ash —0:
) p=1;

(1)(:1:)

bn@) = 5 ma{ (f = 1) () +22 )

— VD () VA2 1 o(R2
Ly U = V(@) 2+ o),
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ba(e) = 5 il f = Jo) @ @2 + o(A2),

_ Lpspe —pigA ®)(g) - L (1) () L1
mia) = GEE G = 0@ = 5 - )W) ph

+o(h?),

_ Lpeps—pE L @) a4 g
bn(2) = =55 "2 2 (= J) D ()h* 4 olh?),

where, for o function g, g\®) denotes the k-th derivative of the function; A is some

constant to be specified in Section 3, and

fo(t) = lim f0n),  uo(t) = Lim e, (t).

Remark 2. It should be pointed out, as in Hjort and Jones (1996), that the
convergence rate depends on the number of parameters in the same manner as
that of the local polynomial regression estimator. In general, one may show,
sufficient differentiability of f(¢,0) and f(¢) permitting, that the order of leading
bias is A?T! when p is odd and h? when p is even. Deriving a general formula for

the constant factor seems out of reach.

3. PROOFS

Proof of Theorem 1. Throughout the proof, it is assumed that A — 0, nh = oo
as n — oo, and the convolution is denoted by * with all the convolutions being

evaluated at z, the point of interest. Write
B = (u,u,uf ™ /(p -1

Vh(y) = (Lh’ya"',hp_lyp—l)t
er = (1,0,---,0)
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Note that B is a p x p nonsingular matrix by (A.3), and

et { [ KW' a} { [ R a)
{ [ KV Vi) dy} e

is the asymptotic variance o%(z) in Theorem 1.
It follows from (2.1) and (2.4) that

Ful@) = £@.600) + H@.00) {~BLa(0) ) La(84) + Opl(nh) ™).

Note that L, (#) can be written as

{ ZKh i — D)ug(X ZKh - }+Ch(9) (3.1)

where a = K(0), Cp(0) = mlogBh(H) and Xi,---,X, are independent ran-
dom variables with density f. Since 6}, is chosen so that L, (6) has mean 0 by
(2.3), L,(6) asymptotically obeys a normal distribution with mean 0 under the
assumptions (A.1)~(A.5). Note further that

Cu(6) = 2K {ugfGOH 1~ 2K s 0} =0, (32)
which implies
nhvarL,(0;) = e [hvar{ ZKh z)ug, i)}+0(h)

2
= DK o) £lx) + O}
2
= {8 [Rmwviwd B@ + o).
Thus the result will follow if we prove that
Flat) = fla)etBt+ o) 69
“BL.0) = (B [ K@WM@Viwdy B+ 0w} (34

To prove (3.3), we need

F(z;0n) = f(z) + O(h?)
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which will be proved in the proof of Theorem 2. This implies

F@00) = f(z;0n)uh, (z)
= f(z)up(z) + O(h)
= f(z)et B* + O(h).

Now to prove (3.4), note that (3.1) and (3.2) imply

Thus we have
“BE0) = 2[R fusubd (0} + Ko n(7(:6) - 1)}
=~ChlO)Ki * {£(6) = £} = Ca(B) K * {upf (50)}]
which yields
SEBLL(0) = o {Ky+ (uout)f(z) + O(M)
— (B [ KoM WViw s B (o) + 00},

Proof of Theorem 2. It follows from (3.1) and (3.2) that the equation (2.3) can

be written as
h
Kp * (ugvg) + E{Kh * (ugf)Kp * vg — Kp * (ugvg)Kp + f} =0 (3.5)

where vg(t) = f(¢;60) — f(t). The left hand side of the equation (3.5) admits a
Taylor expansion as a function of h under the assumptions (A.1) and (A.2). Thus
65, being the unique solution to the equation (3.5), admits a Taylor expansion

by the implicit function theorem. Hence we may write

ug, = u0+u1h+u2h2+---+u6h6+o(h6)
vg, = 'UO+'U1h+'U2h2+"'+Uﬁh6+0(h6),
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and we can expand the left hand side of (3.5) with 6, replacing 6. For this
purpose, let C;. denote the coeflicient of 1" (r =0,1,---,6) in such an expansion

and write

T
(u X v)p = Zuva_k.
k=0

A little algebra shows that

Co = wugvg, OC1=ugu1 + vouy

Cr = (uxv)+t %ug(u X )

Co = (uxv)a+ gmlux o) + pufl oo o )

Cy = (uxv)g+ %ug(u X v)g) + —Em(u X v)é‘l)
+a{ul? (01 fD = oV )+ ul? (wo O — 080 1))

Cs = (uxv)s+ %,ug(u X U)g2> + -2-11/144(’11, x U)g‘*)

tpz{ug (o f O — o F) + ul (v fO — oV f)
+ul? (o f O — o§V )}
1
- 3 {20l (0 1O = oV F D) 4w (WP £ — 0o £ @)}

1
e {tug? (00 f @ — oY £) + 60 (w012 - o7 )
+aul (o f D — of )}
1 1 1
Cs = (wxv)s + gua(ux v)f” + o opalux ) + —ps(u x v) {7
+po{ () x v)3f(1) — (u (1) « ,U(l))3f}
{2 xu®),£0) — 2@ x o), £
+(u® x @) f — (WP x v); )
-1——2%4—#4{4(14(1) x 0)1f® 4+ 6(u® x v) F? + 4(u(3) X 'u)lf(l)
—4(u® x v®); F — 6@ x v@); f —4@® x oM, £},
Setting these equal to 0 and using (A.3) that uo,ugl), . u(()p Y are linearly in-

dependent, we obtain the following :



which yield

f(z;0n)
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1 U
v=v; =0, wvg= —§M2(U(()2) + QULO%()U)’

,ub” (@)

1@ = (- W@ +22 5 - )0 @) |

+o(h?),

(i1) p = 2 ; In addition to the above,

which yield

(i) p=3;In

1 1
- 'Ugl) =0, vp= _5/1’27)(()2)7 U3 = _§M2/U§2)7

Flas0n) ~ F(2) = Spua(F — Fo) P (@)h? + ol8?).
addition to the above,

vy = v3 = 0, 082) =0, v§2) =
_ oo 1@ (1) L o
Vg = 2#2”2 24N4U0 y Vg = % M? )

1 1 1
(0 (Ue + 5#2”512) + '2—4M4U§4) + :{—26#6“86)>

1 y 1 3 1 5
+ug )(szi ) + ~M4vé ) + m#ﬁv(() )>

6
2
(2) (K4 — o (2) | H6 — H2jhd (4)
) (H el + w)
2
(3) B2le — by (3)
+Uq —36,ug v
=0,

which yield

f(z;0n)

f@) = SR 0 - L )@ b

2 py— Nz
+o(h*),
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2 2
— Jpapg, (2) | pe—papa, (4) ] spope—pi (3)
where A —{ T2vy + By 65 U0 -

(iv) p =4 ; In addition to the above,

1 1 1
vy’ =0, vy’ =0, wve+ E;zgfuf) + —ézuwgl) + —MS’U(()G) =0

720
1 1 3 1 5
,ugvf1 ) + —;mwé ) + 50 uﬁfu(() ) = 0

1 pepo — p (4 2) 1 pe — papia (1)
N VIEEY OB VLYY
H4 — [y

12 pg — p3
which yield
o) F(y o LBSB2 =Ry g s
Flasth) = 2) = — 57 “LER S ~ f) () + (1),
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