A Strong Law of Large Numbers for Stationary Fuzzy Random Variables

  • Joo, Sang-Yeol (Department of Statistics, Kangwon National University) ;
  • Lee, Seung-Soo (Department of Statistics, Kangwon National University) ;
  • Yoo, Young-Ho (Department of Statistics, Kangwon National University)
  • Published : 2001.03.01

Abstract

In this paper, a strong law of large numbers for sums of stationary and ergodic fuzzy random variables is obtained.

References

  1. Ann. Prob v.3 A strong law of large numbers for random compact sets Artstein, Z.;Vitale, R. A.
  2. Ann, Prob. v.7 laws of large numbers for D[0,1] Daffer, P. Z.;Taylor, R. L.
  3. Fuzzy sets and systems A characterization of compact subsets of fuzzy number space Ghil, B. M.;Joo, S. Y.;Kim, Y. K.
  4. Fuzzy Sets and systems v.18 elementary fuzzy calculus Goetschel, R.;Voxman, W.
  5. Fuzzy Sets and systems v.64 Marcinkiewicz-type law of large numbers for fuzzy random variables Hong, D. H.;Kim, H. J.
  6. Fuzzy Sets and systems v.14 A strong law of large numbers for fuzzy random sets Inoue, J. H.
  7. Fuzzy Sets and systems v.111 The skorokhod topology on space of fuzzy numbers Joo, S. Y.;Kim, Y. K.
  8. Fuzzy Sets and systems Kolmogorov's strong law of large numbers for fuzzy random variables Joo, S. K.;Kim, Y. K.
  9. Fuzzy Sets and systems v.86 Integrals of fuzzy number valued functions Kim, Y. K.;Ghil, B.M.
  10. Proc. Roy. Soc. London set. A v.407 Limit theorems for fuzzy random variables Klement, E. P.;Puri, M. L.;Ralescu, M. L.
  11. Inform. Sci. v.28 the strong law of large numbers for fuzzy random variables Kruse, R.
  12. Fuzzy Sets and systems v.12 the strong law of large for fuzzy random variables Miyakoshi, M.;Shimbo, M.
  13. J. Math. Anal. Appl. v.114 Fuzzy random variables Puri, M. L.;Ralescu, D. A.
  14. Theory Prob. Appl. v.8 The law of large numbers for D[0,1]-valued random variables Rao, R. R.
  15. Probability Shiryayev, A. N.
  16. Fuzzy Sets and systems v.59 A law of large numbers for random sets Uemura, T.