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ABSTRACT

In this paper, a strong law of large numbers for sums of stationary and
ergodic fuzzy random variables is obtained.
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1. INTRODUCTION

In recent years, strong law of large numbers for sums of fuzzy random vari-
ables have received much attention by several people. A SLLN for sums of
iid. fuzzy random variables was obtained by Kruse(1982), and a SLLN for
sums of independent fuzzy random variables was obtained by Miyakoshi and
Shimbo(1984), Klement, Puri and Ralescu(1986). Also, Inoue(1991) obtained a
SLLN for sums of independent tight fuzzy random sets, and Hong and Kim(1994)
proved Marcinkiewicz-type law of large numbers. Recently, Joo and Kim(to ap-
pear) generalized Kolmogorov’s strong law of large numbers to the case of fuzzy
random variables.

Now, it seems to be natural that we ask whether Birkhoff’s ergodic theorem
can be generalized to the case of fuzzy random variables. The purpose of this
paper is to answer such a question. Section 2 is devoted to describe some basic
concepts of fuzzy random variables. Main result is given in section 3.

2. PRELIMINARIES

Let R denote the real line. A fuzzy number is a fuzzy set @ : R — [0, 1] with
the following properties ;
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(1) @ is normal, i.e., there exists € R such that @(z) = 1.
(2) 4 is upper semicontinuous.
(3) supp @ = cl{z € R| a(x) > 0} is compact.

(4) @ is a convex fuzzy set, i.e., 4(Az + (1 = N)y) > min(d(z),d(y)) for z,y € R
and A € [0, 1]

Let F(R) be the family of all fuzzy numbers. For a fuzzy set 4, if we define
. {z]a(z) >a}, 0<a<l
Lyt =
supp o, a=10

then, it follows that @ is a fuzzy number if and only if L% # ¢ and L,G is a
closed bounded interval for each « € [0,1]. From this characterization of fuzzy
numbers, a fuzzy number % is completely determined by the end points of the
intervals Lot = [ul,, u].

The following theorem(see Goetschel and Voxman (1986)) implies that we can
identify a fuzzy number 4 with the parameterized representation

Theorem 2.1. For @ € F(R), denote u'(a) = v}, and u?(a) = u2 by consider-
ing as functions of o € [0,1]. Then

(1) u! is a bounded increasing function on [0,1].

(2) u? is a bounded decreasing function on [0, 1].

(3) u'(1) < w?(1).

(4) w! and w? are left continuous on [0,1] and right continuous at 0.
)

(5) If v* and v? satzsfy above (1)-(4), then there exists a unique ¥ € F(R) such
that v} = vi(a),v2 = v%(a).

The addition and scalar multiplication on F(R) are defined as usual ;

(G+79)(z) = sup min(i(z),5(z)),
T+y=z

(M) (z) = {’g(Z//\) ,iig,
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for @, € F(R) and A € R, where 0 = Ijg) is the indicator function of {0}. It
follows that if & = {(u),u2) | 0 < @ <1} and § = {(v},v2) | 0 < a < 1}, then

a+9 = {(wl+olud+dd) | 0<a<l})
Moo= {Qul,2) | 0<a<1}for A >0.
Now, we define the metric do, on F(RR) by

doo(ra’af)) = sup h(Laf, Lab),
0<a<1

where h is Hausdorff metric defined as
h(Lyfi, Lo®) = max([u}l — vé!, |ui — ’Ui|)
The norm of & € F(R) is defined by

llal] = doo(@, 0) = max(fugl, [ug])-

Then it is well known that F(R) is complete but non-separable with respect to -
the metric deo. Joo and Kim(2000) introduced a metric ds; on F(R) which makes
it a separable metric space as follows :

Definition 2.2. Let T denote the class of strictly increasing continuous map-
ping of [0, 1] onto itself. For 4,7 € F(R), we define

ds(4,7) = inf{e > 0] there exists a t € T such that
sup |t(a) — a| < € and duo (4, 1(D)) < €},
0<a<l1

where t(7) denotes the composition of ¥ and 7.

It follows immediately that ds is a metric on F(R) and ds(@,9) < doo (@, D).
The metric d; will be called the Skorokhod metric. It is well-known that F(R)
is a Polish space under the topology generated by ds ( For details, see Joo and
Kim(2000) ).

Now, we define, for z € F(R) and 0 <a< f<1,0<d <1,

wyla, B) = h(Lg+i, Lgt) = max(u}; — b, uls - u%) (2.1)

wg(8) = inflxg%wg(ai_l,ai) (2.2)
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where L.+ denotes the closed interval [uiﬁ,ufﬁ], and the infimum is taken over
all partitions 0 = ap < a3 < -+ < @, = 1 of [0,1] satisfying o; — a;—1 > ¢ for all
i. Then, Lemma 3.2 of Joo and Kim(2000) implies that

lim w (8) = 0 for each @ € F(R). (2.3)
60

Theorem 2.3. Let K be a subset of F(R). Then K is relatively compact in the
ds-topology if and only if

sup{||a|] : &2 € K} < o0 (2.4)
and
lim sup{w;(6) : s € K} =0 (2.5)
60

Proof. See Ghil et al.(to appear).

3. MAIN RESULT

Let (€2, .A, P) be a probability space. A function X : Q — F(R) is called a
fuzzy random variable if it is measurable when F(R) is considered as a metric
space endowed with the metric ds. If we denote {(X},X2) |0 < a < 1} by X,
then it is well-known that X is a fuzzy random variable if and only if for each

a € [0,1], X1, and X2 are random variable in the usual sense. If E||X|| < oo,

then the expectation of X is defined by EX = {(EXL, EX2)|0< a < 1}.

Let F*°(R) be the countable product of the space F(R) endowed with the
metric ds. Then F*°(R) is a separable metric space which is topologically com-
plete. Let B(F*°(R)) be the Borel o-field of F*°(R).

Definition 3.1. Let {X,} be a sequence of fuzzy random variables.
(1) {X,} is called stationary if
P((Xy,Xs,+) € B) = P((X2,X3, ) € B)
for all B € B(F®(R)).

(2) A set A € A is called invariant with respect to {X,} if there is a set
B € B(F>™(R)) such that for alln > 1

A= {w] (Znw), Xns1(@),--) € B},
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(3) A stationary sequence {X,} is called ergodic if the probability of every

invariant set 1s either 0 or 1.

Lemma 3.2. Let E||X|| < 0o and € > 0 be given.

(1) There ezists a partition 0 = ag < oy < -+ < ap =1 of [0,1] such that

E(Xéi—Xigr y<eforalli=1,2,---,r.

i—1
(2) Similar statement holds for X2.
Proof. For 0 < a < <1, let us write
0(c, ) = E(X} - XL,).

Let

1, | if 0(0,1) < e
T1 =
inf{a: 60(0,a) > €}, otherwise.

By induction, we define

. i£0(r; 1,1) < ¢
inf{o > 7j_1 : 6(7j-1, ) > €}, otherwise.

The lemma will be proved if we show that 7; = 1 for some j. Suppose that 7; < 1
for all j. Since |X}| <||X]| for all « , it follows from the dominated convergence
theorem that there exists a point «j € (7j-1,7;] such that

B(XL ~X1)> % for all j.
Since 7; increases to a limit as j — oo, it follows that
Xle —Xéj —+ 0 as j — oco.
By dominated convergence theorem,
E(X; — X,,) —0as j — oo,
which is a contradiction. This completes the proof.

Lemma 3.3. Let K be a compact subset of F(R) with respect to the dg-topology.
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(1) If € > 0 is given, there exists a § > 0 such that for allt € K and 0 < a <
a<b<lwithb—a<§,

min(ul —ul, up —ul) < e

(2) Similar statement holds for u2 .
Proof. Let € > 0 be given. Then by Theorem 2.3, there exists a § > 0 such that
w'z(8) < e foralla € K.
This implies that for each @ € K, there exists a partition 0 = ap < a1 < -+ <
a, =1 of [0,1] satisfying o; — a1 > 6 for all ¢ such that

1 1 -
Ua, = Uyt < wglai—1, ;) < € for all 4.

Thus, if0 < a < @ < b < 1and b—a < §, then for some 4, either (a, &) C (o1, ;)
or [, b) C (ej—1,;), which implies
min(ul —uly,up —ul) <e

Theorem 3.4. . Let {X,} be a sequence of stationary fuzzy random variables. If
{X,} is ergodic and E||X1|| < oo, then

where Sp, = S0, X;.

Proof. Let X, = {(X},, X2,) |0<a<1}and S, = {(S},,52,) | 0 < a <1},

na?

For a fixed compact subset K of F(R) in the ds;-topology, we write

n
Toa = )_ Tz ex1 Ko
=1
Then

1 1
I_S}za - EXlla‘ < |_Tna - /~ Xlladpl
n n {X1eK}

1o "
S T+ [ IRlee @
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Let € > 0 be arbitrary. Then by Lemma 3.3, there exist a ¢ > 0 such that for all
uEKand0<a<a<b<1lwithd—a <,

1 1 1 1 €
a—ua+<ub—ua++—.

U
2

Consequently, we have
1 1 1 1
sup |=Tha — [ _ X1adP| < |=Thov — | X{,+dP]|
a<a<h T {X1€K} n {X1€K}

1
+ ol ~ Tl + [ X - XhlP e (32)

|
{X:1€K}

Letting n — 0o, we have from the Birkhoff’s ergodic theorem for real valued
random variables(See Theorem V.2 of Shiryayev (1984)),

1 .
lim sup |—:rm—/~ X1,dP| < 2/|X11a+ — X$,|dP + ¢ (3.3)
{X1€K} ’

=0 gca<h T

with probability one.
Now by Lemma 3.2, there exists a partition 0 = ap < a1 < -+ < o, < 1
satisfying a; — a;_1 > ¢ for all ¢ such that

B(X}, - XL )< % foralli =1,2,--- . (3.4)

i—1

It follows from (3.3) and (3.4) that with probability one

‘ 1
lim sup |-:r,m—/~ X[, dP| < 2
{X1€K}

N0 gcah T
This inequality, (3.1), (3.2) and (3.3) together with Birkhoff’s ergodic theorem
imply that with probability one

1 N
lim sup |=S, - EX} ] < 2e+2/_ || X1 |[dP. (3.5)
{X1¢K}

n—o0 OSQSI n

Since F(R) is a polish space, every probability measure on F(R) is tight: Thus
we can take a compact subset K of F(R) such that

/~ %] dP < e.
{X1¢K}

Then (3.5) implies that with probability one

1
lim sup |=S% —EXL |<4e.
THOOogaglln no 1a|
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Similarily, it can be proved that with probability one

1
lim sup |=S2, — EXi,| < 4e.

n—00 )<< n

Letting € — 0, we complete the proof.
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