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Tests of Hypotheses in Multiple Samples based on
Penalized Disparities!

Chanseok Park! Ayanendranath Basu? and Ian R. Harris?

ABSTRACT

Robust analogues of the likelihood ratio test are considered for testing of
hypotheses involving multiple discrete distributions. The test statistics are
generalizations of the Hellinger deviance test of Simpson (1989) and disparity
tests of Lindsay (1994), obtained by looking at a ‘penalized’ version of the
distances; Harris and Basu (1994) suggest that the penalty be based on
reweighting the empty cells. The results show that often the tests based on
the ordinary and penalized distances enjoy better robustness properties than
the likelihood ratio test. Also, the tests based on the penalized distances are
improvements over those based on the ordinary distances in that they are
much closer to the likelihood ratio tests at the null and their convergence to
the y? distribution appears to be dramatically faster; extensive simulation
results show that the improvement in performance of the tests due to the
penalty is often substantial in small samples.

Keywords: robustness, likelihood ratio test, blended weight Hellinger distance,
overall disparity.

1. Introduction

Consider a discrete parametric model with density mg(z), indexed by an un-
known 8 € RP. To test hypotheses of interest about the unknown parameter,
Simpson (1989) proposed the Hellinger deviance test. Lindsay (1994) discussed
the class of ‘disparity’ tests; disparities form a particular subclass of density
based distances between the data and the parametric model. Several of the dis-
parity tests, including the one based on the Hellinger distance enjoy much better
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robustness properties than the likelihood ratio test while being asymptotically
equivalent to the latter when the null hypothesis is true. These tests can be
extended quite easily to the case when random samples are available for two or
more populations, each indexed by an unknown parameter vector, and one wishes
to perform tests of hypotheses involving the parameters of the different popula-
tions. Simpson (1989) considered such an extension for the special case of the
Hellinger distance; the general case of disparity tests was considered by Sarkar
and Basu (1995).

While for most parametric models the convergence of the likelihood ratio test
(LRT) statistic to the appropriate asymptotic 2 limit is relatively quick, for many
of the popular disparities like the Hellinger distance the assumed x? distribution
may be a very poor approximation to the true null distribution of the disparity
tests in small samples. For the Hellinger deviance test, this can be seen in the
numbers reported by Simpson (1989, Table 3) for the Poisson model. Harris and
Basu (1994) propose a penalized Hellinger distance obtained by reweighting the
empty cells. Basu, Harris and Basu (1996) examine this distance in the context
of hypothesis testing for a single population. In this paper we apply the penalized
distances for testing of hypotheses in multiple populations; our results indicate
that the penalty can improve the performance of the tests in a general class of
disparities including the Hellinger distance.

The rest of the paper is organized as follows. Section 2 provides a review
of the penalized disparities. The testing procedures in multiple samples based
on the penalized disparities are introduced in Section 3. Section 4 presents an
extensive empirical study to illustrate the performance of these tests in some
discrete models. Section 5 presents concluding remarks.

2. Minimum Disparity Estimation and the Impact of Empty
Cells

Consider a parametric family with countable support and density mg(z), 8 €
RP. For simplicity of presentation, we discuss our results in terms of a particular
subfamily of disparities, the blended weight Hellinger distances (BWHD); our
numerical results of Section 4 will also be based on the BWHD family. However
the particular asymptotic results given below and in Section 3 would also hold
for the general class of disparities.

Assume that we have a sample of size n from the true distribution and let
d(z) be the proportion of sample observations at the value z. The BWHD is a
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measure of discrepancy between d and mg, which can be written as a function of
a parameter « € [0, 1] as:

BWHD.(d, mg) = = Z{a\/jg) +;n\ﬁ/(m)ﬂ }2 a=1-a. (2.1)

Note that for @ = 0.5 one gets 23 {\/d(z) — /ma(z) }2, which is twice the
squared Hellinger distance.

Given a particular model and a sample of size n, one can obtain estimates
of the unknown parameter 3 by minimizing some member of the BWHD family.
For a € [1/3,1], the estimates obtained by minimizing the above disparity enjoy
better robustness properties compared to the maximum likelihood estimator (see
Lindsay 1994); the latter is a minimizer of the likelihood disparity (LD),

D(d, mg) Ed log (d(z)/mga(z)). (2.2)

The estimating equation of the maximum likelihood estimator, obtained by equat-
ing the derivative of the last equation with respect to 8 to zero, has the form

Za z)Vmg(z) = 0,

where V represents the derivative with respect to 8 and é(z) = d(z)/mg(z)~11is,
a standardized form of the residual which has been called the ‘Pearson residual’.
in Lindsay (1994). The estimating equation of any other minimum disparity
estimator has a similar form given by

ZA ))Vmg(z) =0,

where the function A(-) is specific to the particular disparity. This function
can be centered and rescaled, without changing the estimating properties of the
corresponding estimators, so that A(0) = 0 and A’(0) = 1. This is the reason
why one considers the factor of 1/2 in equation (2.1), or twice squared Hellinger
distance, rather than the squared Hellinger distance itself. Henceforth we will
implicitly mean twice the squared distance when we refer to the Hellinger distance
(HD) The centered and rescaled function A is called the residual adjustment
function of the disparity.

Harris and Basu (1994) observed that one can generate a family of disparities
through an adjustment of the weight of the empty cells in the HD. This family,
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called the family of penalized Hellinger distances (PHD) by Harris and Basu, has

the form:
2 )" {\/M—,/mﬁ(w) }2+h > mg(a). (2.3)

d(z)#0 d(x)=0

Substituting A = 2 in the above equation returns the ordinary HD, and other
members correspond to other values of h. In particular Harris and Basu noticed
that h = 1 provided a member of the PHD family which was an attractive
alternative to the ordinary HD. The choice of h = 1 makes the residual adjustment
function of the PHD equal to that of the likelihood disparity, ¢.e. this reweights
the empty cells so as to treat them in the same manner as the maximum likelihood
estimator.

In the general case we can define the penalized blended weight Hellinger dis-
tance (PBWHD) as a function of « and h as:

PBWHD, »(d,mp) = = > d(x) mp(@ } +h Z mﬁ 2.4)

d( 10 ar/d(z) + ay/m

where @ = 1 — . In particular we will focus on PBWHD,, ;, for the same reason
as in the case of the PHD. This reweighting of the empty cells can be particularly
useful for disparities with large values of a (in which we are more interested for
robustness purposes anyway ), as the weight assigned to the empty cells increases
with the value of a. In the extreme case of a = 1 (this distance is also known as
the Neyman’s modified chi-square) the BWHD is not even defined if any of the
cells are empty. The reweighting provides a simple solution to this problem.

Now we consider tests of hypotheses based on the penalized distances. Let
Qg be a proper subset of RP, and suppose that the hypothesis

Hy : B € Qy, (2.5)

is of interest. Let 8%, and B ar be the maximum likelihood estimators of 8 under
the null hypothesis and without any restrictions respectively. It is well known
that

2n {LD(d, mgo ) — LD(d, m[aM)}, (2.6)

which equals negative of twice log likelihood ratio, has an asymptotic x? distri-
bution with degrees of freedom equal to the number of independent restrictions
provided by the null hypothesis. Alternatively, consider the disparity test statistic
generated by the PBWHD, 3, given by ‘

2n {PBWHD,1(d,mgo ,) — PBWHDo(d,my )}, (2.7)
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where ,Bg,h and Ba,h are the estimators obtained by minimizing the penalized
distances in (2.4) under the null and without any restriction respectively. When
a = 0.5 and h = 2 this is the ordinary Hellinger deviance test statistic (Simpson
1989) and has the same asymptotic x? distribution as the LRT statistic in (2.6)
under the null. Since the penalty only reweights the empty cells, it follows from
Lindsay (1994) that the other members of the family of tests defined in (2.7) also
have the same asymptotic distribution as the LRT.

Lindsay (1994) shows that the robustness of the minimum disparity estimators
as well as the disparity tests are related to the “estimation curvature of the
disparity,” defined as A”(0), the second derivative of the residual adjustment
function at zero. Since altering the weights of the empty cells (corresponding to
8 = —1) does not affect this curvature, the robustness of the tests based on (2.4)
are expected to be minimally affected by the value of & in large samples.

Notice that these penalized disparities are also useful for testing goodness-of-
fit. While in this paper we concentrated on robust tests of parametric hypothesis
and not on goodness-of-fit, we mention the relevant result which will be utilized
on a sequel paper dealing with the latter topic. Since the multinomial goodness-
of-fit problems where we will be looking at the sample space is finite, and the total
probability of the empty cells asymptotically go to zero, the following theorems:
are simple extensions of the results of Basu and Sarkar (1994).

For a sequence of n observations on a multinomial distribution with proba-

bility vector w = (m,..., ) and Ele m; = 1. Let x = (z1,...,2k) denote the

vector of observed frequencies for k categories. Let d = x/n = (z1/n,...,zx/n)

and w9 = (mo1,...,mok) be a probability vectors with mp; > 0 for each 1 and
k _ .

Theorem 2.1. Under the simple null hypothesis Hy : w = o, the test statistic
Dy = 2nPBWHD,, 1 (d, ) has an asymptotic x2(k — 1) distribution.

Proof: Consider the multinomial random variable X = (X3, ..., Xy) for which
x = (x1,...,Zx) is an observed realization. Basu and Sarkar (1994, Theorem 3.1)

showed that 2nBWHD,(d, =) LN x%(k — 1) under the null. Hence it suffices to
show that under the null

D,, = 2n{BWHD,(d, 7) —~ PBWHD4(d, w)} = 0p(1).
Since PBWHD and BWHD are different only at the empty cells, we have

k
Dn=nKa Y moili,
=1
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where K, = 2,1/{2(1 — @)?} — k| and I; = I(X; = 0), the indicator function of
the event (X; = 0). Now we have only to show E(D,) — 0 and Var(D,) — 0 as
n — 0. Since E(I;) = P(X; = 0) = (1 — mp;)", we have

—nK Zﬂ'()z —TLK Zﬂ'gzl—ﬂm) .

i=1
Since nr™ — 0 for |r| < 0 and k is finite, we have nE(I;) — 0 and so E(D,) — 0.
Also

Var(D,, {ZWOZVBI )+ ZZWOZ'WOJ'COV(L',IJ')}
i<j
Ko)*{ Z B(L)+2) E(L)}.
1<J
Since n2E(I;) — 0 and k is finite, Var(D,) = 0 as n — oo. a

Theorem 2.2. Let Ay = {m = (nq,...,7x) | m>0,1=1,2,...,k; Zlem =
1}. Define a parameter vector @ = (61,...,0s) € R®, s < k — 1, and the map-
ping f 1 R® — Ay such that for each parameter vector @ there corresponds a
probability vector w. The hypothesis

Hy:0 €0y and Hy: w e Iy, (28)

are then equivalent when Il = f(©q). Suppose that the regularity conditions of
Section 4 in Basu and Sarkar (1994) hold and 6 is any BAN estimator of 8 and
& = f(0). Then under (2.8) 2nPBWHD,, »(d, 7t) converges in distribution to a
x%(k — s — 1) random variable as n — co.

Proof: Basu and Sarkar (1994, Theorem 4.3) showed that 2nBWHD,, (d, 7) L

x%(k — s — 1). Hence it suffices to show
Dy, = 2n{BWHD,(d, #) — PBWHD,, ,(d, #)} = 0,(1).

Notice that I; and # are both non-negative random variables. We have
D, = nK, Z #oi i

Notice that E(fo;l;), E(#3,1;) and E(foi#to;1;1;) are all bounded above by E(I;).
Hence applying the technique of the proof of Theorem 2.1, we have E(D,) — 0
and Var(D,) — 0 as n — oo. O
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3. Tests of Hypotheses in Multiple Samples

For simplicity of presentation, we discuss the two population case; the results
are true for k populations, where k£ > 2. Suppose that random samples of size
n; are available from the population with density mg,(z), and let d;(x) be the
proportion of sample observation with value z in the i-th sample, ¢ = 1,2. Let
B = (B%,B%)" € R? and n = ny + ny. We will assume that ny/n — a € (0,1), so
that neither sample size asymptotically dominates the other. The hypothesis to
be tested is:

Hy: ﬂ € o,

where Qg is a proper subset of R?P. ‘
Let p be an appropriate disparity and construct p(d;, mg,),i = 1,2. Define
the overall disparity po(8) for the two samples taken together as

po(B) = %{nlﬂ(dl,mﬂl) +ngp(da, mp,) }-

Then the disparity test statistic for the hypothesis Hy is given by the test statistic
2n{po(B°) — po (3)} which has an asymptotic x?(r) distribution under the null
hypotheses Hy where r is the number of independent restrictions imposed by
the null hypothesis, and 8° and B are the minimizers of the overall disparities
under the null hypothesis and without any restriction respectively (Simpson 1989;
Sarkar and Basu 1995). For the likelihood disparity of (2.2), this statistic reduces
to the LRT statistic.

4. Numerical Results

4.1. Simulation Results

In this section we present selected results from an extensive numerical study
to compare the performance of the tests resulting from the penalized distances to
those generated by the ordinary distances. The results presented in this section
are for the Poisson model. However, numerical results obtained at the geometric
model, not presented here, indicate that similar results hold in that model as well.
All the simulation results presented in this paper are based on 5000 replications.

The first study involves random samples of sizes n; and ny drawn from two
Poisson populations, with means 8; = B2 = 5. The tests studied are the LRT, the
HD test, and the PHD test for different combinations of (n1,ng) values in testing
the hypothesis Hy : 87 = (2. The observed level for each testing procedure is
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Table 4.1: Levels of the LRT, HD test and PHD test. Both populations are
Poisson(5).

Nominal level 0.1 0.05
(n1, ng) LRT HD PHD LRT HD PHD
(25, 25) 0.096 0.142 0.081 0.048 0.078 0.037
(25, 50) 0.106 0.148 0.092 0.052 0.080 0.041
(50, 50) 0.099 0.123 0.088 0.050 0.068 0.045
(50, 100) 0.104 0.141 0.100 0.055 0.073 0.051
(100, 100) 0.101 0.114 0.095 0.0563 0.066 0.052

Table 4.2: Levels of the LRT, HD test and PHD test under contamination. Pop-
ulation 1 is Poisson(5). Population 2 is 0.9Poisson(5) + 0.1Poisson(15).

Nominal level 0.1 0.05
(n1, n2) LRT HD PHD LRT HD PHD
(25, 25) 0.452 0.179 0.118 0.351 0.112 0.061
(25, 50) 0.515 0.175 0.131 0.420 0.108 0.067
(50, 50) 0.644 0.196 0.157 0.551 0.121 0.086
(50, 100) 0.719 0.201 0.177 0.635 0.129 0.108
(100, 100) 0.844 0.259 0.227 0.785 0.179 0.138

determined as the proportion of test statistics exceeding the critical value of the
assumed x?(1) limit. Hence, given a probability estimate P its estimated standard
deviation may be computed as [H(1 — $)/5000]'/? (assuming binomial rejection
frequencies) which can be no greater than [0.5 x 0.5/5000]!/2 ~ 0.007. The results,
displayed in Table 4.1, show, as expected, that the levels of the likelihood ratio
converge to the nominal levels faster than the other two test statistics. However,
for each of the three nominal levels considered (results corresponding to nominal
level 0.01, also computed in our simulations, have not been reported for brevity),
the observed levels of the PHD tests are closer to those of the LRTs compared to
the HD test. The HD test apparently requires considerably large sample sizes for
its observed level to be reasonably close to the nominal level, which was observed
by Simpson (1989). To make the above observations graphically explicit we can
choose n; = ny = n and plot the observed levels of the three tests on the same
graph. This is displayed in Figure 4.1(a) over a fine grid of values for n. It is
clear that the PHD test follows the LRT quite closely, whereas the convergence of
the observed levels of the HD test is considerably slower. Figure 4.1(b) provides
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Figure 4.1: (a) Convergence of the observed levels of the LRT, the HD test, and
the PHD test to the nominal level 10%. (b) Difference of the observed levels
against the LRT.

the difference of the other two tests against the LRT. The difference between the
PHD test and the LRT stays much closer to zero.

Table 4.2 presents the results of a similar study, where population 2 is now the
mixture 0.9Poisson(5) 4+ 0.1Poisson(15), where the second, smaller, component is
considered to be a contamination. While the minimum disparity estimators are
robust to data contamination, they are not invariant under it; therefore the asy-
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Figure 4.3: Observed levels of the PHD test under contamination. Nominal level
10%.

mptotic limit of a robust minimum disparity estimator, when data are generated
from the above contaminated mixture, will be different from the target value of
5, although it will probably be closer to the target value than the mean of the
maximum likelihood estimator, which in this case is 6. Thus as the sample size
increases, the observed levels of the tests (which, strictly speaking, are observed
powers) should approach 1. Suppose, however, we want to test whether the mean
of the first population is equal to the mean of the larger component in the second
population. That is, we are treating the smaller component in the second pop-
ulation as a contaminant rather than as an inherent part of the distribution
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Table 4.3: Powers of the LRT, HD test, and PHD test. Population 1 is
Poisson(10). Population 2 is Poisson(11).

Nominal level 0.1 0.05
(n1, ne) LRT HD PHD LRT HD PHD
(25, 25) 0.300 0.332 0.238 0.197 0.237 0.144
(25, 50) 0.356 0.404 0.305 0.243 0.298 0.194
(50, 50) 0.464 0.483 0.415 0.343 0.369 0.283
(50, 100) 0.562 0.608 0.530 0.435 0.491 0.397
(100, 100) 0.699 0.709 0.675 0.586 0.600 0.555

Table 4.4: Powers of the LRT, HD test, and PHD test under contamination.
Population 1 is Poisson(10). Population 2 is 0.9Poisson(11) + 0.1Poisson(1).

Nominal level 0.1 0.05
(n1, na) LRT HD PHD LRT HD PHD
(25, 25) 0.182 0.287 0.184 0.109 0.196 0.102
(25, 50) 0.151 0.322 0.222 0.089 0.223 0.133
(50, 50) 0.176 0.381 0.307 0.108 0.281 0.204
(50, 100) 0.157 0.443 0.381 0.094 0.341 0.268
(100, 100) 0.171 0.530 0.496 0.104 0.421 0.384

generating the data. In this case one might want to construct a test which has
a probability of rejection close to the nominal levels when the mean of the first
population is actually equal to the mean of the larger component of the second
population. By this criterion, the HD and PHD tests are superior to the LRT.
The observed difference between the first two tests is partly due to their true
critical values being different in small samples when the null hypothesis is true
(the HD test having a larger critical value). The robustness of the PHD test
compared to the LRT in this situation is graphically represented in Figures 4.2
and 4.3, using several values of the sample sizes with n; = ng = n. In this case
the second sample is drawn from the (1 — €)Poisson(5) + ePoisson(15) mixture,
€ € [0,0.1]. The three dimensional plot in Figure 4.2 provides the observed levels
(at nominal level 10%) of the LRT statistics; as € increases, the observed levels of
the test statistics increase quickly, as evidenced by the sharp rise in the observed
level around the far corner of the cube. In comparison, the surface representing
the levels of the PHD test (Figure 4.3) is much flatter and closer to the nominal
level. The same effect is visible in the contour plots corresponding to the three
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dimensional graphics. ‘

Next we study the power of these tests. Table 4.3 presents the power of these
tests when the first sample is drawn from Poisson(10) and the second one from
Poisson(11). Note that a large part of the difference in the observed power of
the three procedures in small samples is due to the fact that the actual crit-
ical values for the tests can be quite different from the x? critical values. In
particular, the HD has too inaccurate a level in small samples; its true critical
values are often substantially higher than the x? critical values (see Table 4.1).
Table 4.4 displays the results where the observations in the second sample come
from 0.9Poisson(11) + 0.1Poisson(1). The presence of the second component as a
contamination causes the LRT to lose power rapidly, whereas the other two tests
hold their power much better. These observations are illustrated in Figures 4.4
and 4.5 using n; = ne = n. A look at the e edge of the cubes shows that as
€ increases, the power of the LRT sharply falls, whereas the PHD test shows a
much smaller loss in power. This effect is also seen in the contour plots.

In Tables 4.5 and 4.6 we study the effect of the penalty on general members
of the BWHD family for several values of a. The results show that as o moves
towards 1, the penalty seems to provide a bigger improvement in the observed
small sample levels of the tests. Expectedly, the penalty does not improve the
situation at o = 0. Simulations were performed (Tables 4.7 and 4.8) to determine
the powers of these tests at §; = 10 and f; = 11 (as in Table 4.3) and when
population 2 is 0.9Poisson(11) + 0.1Poisson(1) (as in Table 4.4). The findings
are similar to the results in Tables 4.3 and 4.4. The high power for some of
the ordinary BWHD tests in Tables 4.7 and 4.8 are the consequences of the true
critical values of the test being severely underestimated by the x? approximation.
When they are converted to more legitimate level a tests (via the penalty), a =
1/3 performs the best in terms of power (except for a = 0, for which the empty cell
correction fails to provide any improvement making the apparently high power
values meaningless). The robust tests perform well in retaining their powers
under contamination (compare Tables 4.7 and 4.8). For a > 1/3, the actual
distances generate higher observed powers compared to the penalized distances,
mainly because the robust tests based on the actual distances have levels which
are too inaccurate in small samples.

In general, the comparison between values of & may be summarized as follows.
It appears that if there is no contamination, the tail of the distribution is best
approximated by a x? distribution when « is close to 1/3. As a moves away in
either direction, the level gets inflated — which can be largely corrected by the
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empty cell penalty for larger values of «, but not for smaller values of o. Thus
tests with penalized distances with « in the range [1/3,1) appear to be the
meaningful set for our purpose. Values of a close to 1/3 seem to give the best
power for pure data, while larger values are better at preserving the power for
contaminated data. On the whole we believe values of « close to 0.5 can give the
best compromise, and feel that the PHD test can be a very attractive practical
data analysis tool.



360 Chanseok Park, Ayanendranath Basu and Ian R. Harris

Table 4.5: Levels of the disparity tests for several members of the BWHD and
PBWHD family. Both populations are Poisson(5).

Nominal level 0.1 0.05

(n1, no) « BWHD PBWHD BWHD PBWHD

(25, 25) 0 0.231 0.251 0.167 0.179

1/3 0.100 0.093 0.051 0.047

0.5 0.142 0.081 0.078 0.037

0.7 0.358 0.086 0.268 0.039

0.9 0.791 0.117 0.752 0.061

(25, 50) 0 0.235 0.248 0.163 0.177

1/3 0.109 0.104 0.054 0.049

0.5 0.148 0.092 0.080 0.041

0.7 0.342 0.094 0.261 0.044

0.9 0.772 0.126 0.727 0.065

(50, 50) 0 0.217 0.230 0.149 0.158

1/3 0.100 0.097 0.051 0.050

0.5 0.123 0.088 0.068 0.045

0.7 0.297 0.102 0.217 0.055

0.9 0.751 0.144 0.705 0.090

(50, 100) 0 0.219 0.232 0.148 0.158

1/3 0.109 0.104 0.058 0.055

0.5 0.141 0.100 0.073 0.051

0.7 0.304 0.118 0.220 0.061

0.9 0.747 0.157 0.697 0.096

(100, 100) 0 0.200 0.210 0.140 0.147

1/3 0.101 0.100 0.055 0.052

0.5 0.114 0.095 0.066 0.052

0.7 0.231 0.110 0.156 0.057

0.9 0.716 0.150 0.667  0.082




Tests of Hypotheses in Multiple Samples 361

Table 4.6: Levels of the disparity tests for several members of the BWHD and
PBWHD family under contamination. Population 1 is Poisson(5). Population 2
is 0.9Poisson(5) + 0.1Poisson(15).

Nominal level 0.1 0.05

(n1, na) a BWHD PBWHD BWHD PBWHD

(25, 25) 0 0.862 0.868 0.838 0.845
1/3 0.214 0.210 0.134 0.131
0.5 - 0.179 0.118 0.112 0.061
0.7 0.373 0.105 0.301 0.053
0.9 0.796 0.132 0.759 0.068

(25,50) 0 0.872 0.875 0.853 0.857
1/3 0.232 0.232 0.153 0.154
0.5 0.175 0.131 0.108 0.067
0.7 0.371 0.113 0.281 0.055
0.9 0.784 0.151 0.744 0.083

(50, 50) 0 0.969 - 0.971 0.962 0.964
1/3 0.302 0.303 0.209 0.207
0.5 0.196 0.157 0.121 0.086
0.7 0.340 0.137 0.250 0.076
0.9 0.757 0.174 0.713 0.109

(50, 100) 0 0.979 0.980 0.975 0.976
1/3 0.339 0.341 0.247 0.252
0.5 0.201 0.177 0.129 0.108
0.7 0.323 0.154 0.243 0.091
0.9 0.743 0.194 0.696 0.128

(100, 100) 0 0.999 0.999 0.999 0.999
1/3 0.469 - 0.469 0.361 0.358
0.5 0.259 0.227 0.179 0.138
0.7 0.347 0.180 0.260 0.106

0.9 0.754 0.205 0.709 0.129
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Table 4.7: Powers of the disparity tests for several members of the BWHD and
PBWHD family under contamination. Population 1 is Poisson(10). Population
2 is Poisson(11).

Nominal level 0.1 0.05

(n1, n9) « BWHD PBWHD BWHD PBWHD

(25, 25) 0 0.486 0.507 0.400 0.422

1/3 0.304 0.291 0.200 0.191

0.5 0.332 0.238 0.237 0.144

0.7 0.513 0.206 0.437 0.122

0.9 0.826 0.202 0.794 0.120

(25, 50) 0 0.528 0.547 0.440 0.463

1/3 0.362 0.352 0.251 0.239

0.5 0.404 0.305 0.298 0.194

0.7 0.579 0.276 0.493 0.169

0.9 0.837 0.270 0.805 0.171

(50, 50) 0 0.586 0.601 0.499 0.522

1/3 0.467 0.461 0.344 0.335

0.5 0.483 0.415 0.369 0.283

0.7 0.595 0.395 0.518 0.277

0.9 0.837 0.412 0.806 0.307

(50, 100) 0 0.649 0.669 0.555 0.583

1/3 0.568 0.560 0.446 0.434

0.5 0.608 0.530 0.491 0.397

0.7 0.701 0.513 0.627 0.384

0.9 0.854 0.511 0.823 0.402

(100, 100) 0 0.742 0.755 0.663 0.680

1/3 0.700 0.697 0.586 0.582

0.5 0.709 0.675 0.600 0.555

0.7 0.747 0.664 0.675 0.552

0.9 0.865 0.673 0.840 0.574
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Table 4.8: Powers of the disparity tests for several members of the BWHD and
PBWHD family under contamination. Population 1 is Poisson(10). Population
2 is 0.9Poisson(11) + 0.1Poisson(1).

Nominal level 0.1 0.05

(n1, n2) «a BWHD PBWHD = BWHD PBWHD

(25, 25) 0 0.832 0.833 0.801 0.803

1/3 0.196 0.184 0.116 0.107

0.5 0.287 0.184 0.196 0.102

0.7 0.506 0.183 0.429 0.101

0.9 0.832 0.194 0.798 0.108

(25, 50) 0 0.889 0.889 0.862 0.864

1/3 0.190 0.181 0.115 0.109

0.5 0.322 0.222 0.223 0.133

0.7 0.529 0.237 0.448 0.148

0.9 0.821 0.262 0.784 0.173

(50, 50) 0 0.925 0.922 0.907 0.908

1/3 0.233 0.224 0.151 0.143

0.5 0.381 0.307 0.281 0.204

0.7 0.555 0.355 0.479 0.250

0.9 0.843 0.399 0.813 0.302

(50, 100) 0 0.968 0.967 0.960 0.958

1/3 0.244 0.234 0.159 0.153

0.5 0.443 0.381 0.341 0.268

0.7 0.593 0.449 0.516 0.330

0.9 0.795 0.495 0.765 0.384

(100, 100) 0 0.984 0.984 0.978 0.977

1/3 0.312 0.305 - 0.216 0.208

0.5 0.530 0.496 0.421 0.384

0.7 0.635 0.589 0.560 0.473

0.9 0.804 0.638 0.771 0.537
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4.2. An Example

In a biological test concerning chemical mutagenicity (see Woodruff et al.,
1984), male flies were either exposed to a particular dose of a chemical or to
control conditions. The responses were the number of daughter flies of these
males having a recessive lethal mutation. One such data sets was analyzed by
Simpson (1989, Table 5). The responses are modeled as random samples from a
Poisson distribution with mean 6; (control), and 6, (exposed) respectively.

For testing Hy : 61 > 69 against Hy : 81 < 05, a signed disparity is appropriate.
Given the ordinary disparity test statistic d,, this signed disparity statistic is
given by d,ll/ 2sign(ég —6,) where 6; and 6, are the minimum disparity estimators
of the parameters; for both the HD and the PHD, the signed disparity test is
asymptotically equivalent to the signed LRT. For the full data and the reduced
data (after removing the two large observations from the treated group) the signed
disparities and the associated p-values are given in Table 4.9.

Table 4.9: The signed disparity statistics and their p-values for the Drosophila
Data.

. All observations Outliers Deleted
Distance . . . .
Disparity p-value Disparity p-value
LD 2.595 0.002 1.099 0.136
HD 0.698 0.243 0.743 0.229
PHD 0.707 0.240 0.750 0.227

Notice that the presence or absence of the two large counts has little effect
on the robust methods. The null hypothesis, that the mean number of recessive
lethal daughters for the control group is larger than that in the treated group is
supported in either case. The conclusions, however, are opposite when one uses
the signed LRT. Notice also that the HD and the PHD give very similar results,
indicating that the robustness property of the test has not been compromised in
this case by the use of the penalty.

5. Concluding Remarks

Testing of hypotheses is a fundamental paradigm in statistics. The LRTSs
which are widely used for parametric inference and have several asymptotic opti-
mality properties are not, in general, robust to outliers. When dealing with real
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data, robustness to outliers is a major concern. Hampel et al. (1986 p. 28) com-
ment that “1-10% gross errors in routine data seem to be more the rule rather
than the exception.” The Hellinger deviance test of Simpson (1989) and the dis-
parity tests of Lindsay (1994) provide robust alternatives to the LRT. However,
many of the robust tests require very large sample sizes for the x? approxima-
tion to be reasonably valid; using this approximation in samples of small and
moderate sizes may lead to results which are too inaccurate. In this paper we
have discussed the use of penalized disparities which can significantly improve the
performance of the tests in small samples when multiple samples are involved.
Within the BWHD family, the improvement is substantial for disparities with
large values of «, in which we are more interested for robustness purposes.-
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