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Anisotropic Modelling of Partially Saturated Soil Behaviour
by Means of ALTERNAT
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Abstract

In partially saturated soil the moisture induces additional intergranular stresses which cause loose soils to shrink
when dried and to collapse when wetted. To take account of these phenomena the interaction between the pore water
and the soil particles needs to be modelled properly. The interaction between soil particles and pore water can be applied
to a regular packing and random packings to consider the suction-induced effective stress. Based on recent research
it is understood that the soil fabric affects the suction-induced effective stress. In the ALTERNAT model an anisotropic
tensor may be defined which approximates the fabric tensor. Thornton's simulations of random packing include the failure
stress state and the corresponding fabric tensor in the micromechanical simulation. In this study the formulation of the
suction-induced effective stress for both a regular packing and random packings of spheres are discussed. It enables
a comparison between the fabric tensor in the micromechanical simulation and a proposed simple anisotropic tensor
approximating the fabric tensor in ALTERNAT. The proposed simple anisotropic tensor is found to be 20 ~40% larger

than the fabric tensor according to the micromechanical simulations.
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1. Introduction

Partially saturated soil occurs in practice between the
ground surface and roughly the groundwater table. To
take advantage of effective stress-strain models as used
for dry and fully saturated soil an effective stress concept
for partial saturation would be paramount. To investigate
the possibilities for such concept a micromechanical
study is done to describe the interaction between the soil
skeleton and the pore liquid as pore water and air with
water vapour. This interaction must be expressed in
continuum terms by means of an effective stress induced
by pore suction. Such a continuum mechanical concept
is needed to understand the effect of the pore suction on
the stress-strain behaviour of the soil skeleton.

The aim of this paper is to formulate such suction-
induced effective stress using the measured pore water
suction together with a macroscopic measure of the
anisotropic fabric of granular soils. For the fabric tensor
in granular soils the formulation of the suction-induced
effective stress of a regular packing and random packings
of spheres are considered. To this end the ALTERNAT

- model will ‘be applied to estimate an anisotropic tensor
as a simple formulation. The results of the anisotropic
tensor in the ALTERNAT model will be compared to the
fabric tensor as simulated by Thornton (2000) for random
packings of spheres. In this paper it is investigated
whether these tensor can be used to formulate a continuum
mechanical model for the suction-induced effective stress.

2. Interactions of Water Bridge and Water
Vapour

2.1 Equilibrium of the Gas-liquid Interface

The pressure difference for a warped gas-liquid interface,
as a function of surface tension and curvature, has been
derived by Laplace(1806) (Nazemi, 1998). If R, =R,
the mean radius of the interface curvature R’ can be

expressed by:
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thus the Laplace equation becomes:
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Laplace equation may be changed due to the existence
of surface tension, ¢. An arbitrary surface of mean radius -
of curvatre R’ depends on mechanical equilibrium
between two fluids at different pressures p, and p,. A
plane surface, therefore, can exist only when the pressures
of the fluid on the two different sides are equal. If the two
centres of curvature are on both sides of the saddle-shaped
surface as illustrated in Fig. 1, the pressure difference ¢
is expressed by:

o= ok - )

The intersection of the gas-liquid interface with a
plane through the centroid of the spheres is a plane curve
y = fix). The radius of curvature » for a point P on a

plane curve is given by (Molenkamp & Nazemi, 2000):
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To describe the shape of the liquid bridge as illustrated
in Fig. 2 and the corresponding pressure deficiency
across the gas-liquid interface in equation (3) for R, = »
according to equation (4) is substituted while the radius

R, can be expressed by:

dZ 9 1/2
Ry = y[1+ (53] ©)
After substitution of equation (4) and (5) in equation
(3) the capillary suction ¢ can be written as follows

(Hotta, Takeda & Iiniya, 1974)

dZ
2

¢ _
o

— _ 1
[1+(%)2]3/2 y[1+(%)2]1/2 ©)



From the shape of the liquid bridge as illustrated in
Fig. 2 the dimensionless capillary suction ¥ can be

written as follows

&Y
p= 4R - dfzr(; - Vi
[ 273/2 291/2
[1+ ()] YI1 + (57 )°]

M

where X (= x/R) and Y (= y/R) are dimensionless
coordinates with respect to the sphere radius R. The
dimensionless capillary suction ¥ shows the effect of
the difference in the gas pressure and the liquid pressure.
If the liquid pressure is larger than the gas pressure, the

sign is negative.
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Fig. 1. Surface tension on a curved interface with centre on
different side
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Fig. 2. A symmetric liquid bridge between two equal rigid spheres
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Fig. 3. Section of a symmetric liquid bridge in contact with a rigid
sphere

2.2 Equilibrium of the Spheres and the Liquid Bridge

Fig. 3 describes the geometry of the right hand side
half of liquid bridge with neck radius yj, the y-coordinate
of the point yx on the gas-liquid interface at ordinate x,
the radius y, of the interface with the right sphere at x.
Both surfaces intersect at x-coordinate X. and y-coordinate
ye. The capillary suction ¢ and the direct interparticle
force f between the spheres can be calculated depending
on the amount of water in between the spheres.

In the absence if gravitational effects of equilibrium
of the liquid profile and buoyancy effect invoives three
conditions. This condition involves the total load through
the mid-plane between the spheres as illustrated by
means of Fig. 3. The total force in x-direction through
the mid-plane between the spheres must be zero because
the right side sphere in Fig. 2 does not accelerate. In this
case the dimensionless capillary suction ¥ can be
described as a function of the liquid-solid contact angle

6 and the dimensionless neck and contact radii Y; and

Y., namely (Nazemi & Molenkamp, 1999)

2V, —2Y.(Y.cos0+ sinfy 1 — Y?
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3. Partially Saturated Pyramidal Packings of
Spheres

3.1 REV of Pyramidal Packing

A physical model may be used to consider the
micromechanical relation between the saturation, the pore
suction and the soil induced intergranular, or effective
stress in a granular skeleton. The model is considered as
a regular pyramidal packing of isodiametrical spheres
with radii R. These idealized soils consist of layers on
a square grid with a grid size 2Rb, in which b (=1) is
the width parameter. In subsequent horizontal layers the
grid is moved by half a grid size in both directions so
that a sphere of a subsequent layer falls in the hollow
between the four sphere of the layer underneath
(Molenkamp & Nazemi, 2000). A Representative
Elementary Volume (REV) of pyramidal packing is
described in Fig. 4 and Fig. 5.

3.2 Suction-Induced Effective Stress in Pyramidal
Packing

At a low saturation the effective stresses due to the
water bridges in the regular packing involve only the
normal suction forces. The normal forces N is on the
eight diagonal contact points of each sphere are indicated

by f. When /=1 the vertical normal forces N is equal
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Fig. 4. Geometry of REV of pyramidal packing of spheres with radius R
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to the vertical contact forces 7 on the two vertical contact
points of each sphere. When % = v2 the normal horizontal
forces N* are equal to the horizontal contact forces £* on
the four horizontal contact points per sphere.

The suction induced interparticle force f between two
spheres can be expressed in dimensionless form by
quantity F, namely (Molenkamp & Nazemi, 2000):

F = —o‘% = function(?, 4, S) 9)

where ¥ is the dimensionless capillary suction, ¢ is
the liquid-solid surface contact angle and S is the
dimensionless sphere half-separation. The effective pore
suction ¢’ can be expressed in dimensionless terms as

well. The expressions are (Molenkamp & Nazemi, 2000)

, LR v
gy = K — Eh LB —a] o)

and
. , h
Uy = Uy = £ [*WF§ if h=\/§] (1)

3.3 Fabric Tensor, Neutral Stress State and Failure
State in Pyramidai Packing

The geometry of the pyramidal packing as illustrated
in Fig. 5 shows that the diagonals COE and DOF are
always constant, namely 4R because the spheres if the

Top Inclined Plane

Fig. 5. Scaled geometry of the pyramidal packing
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Fig. 6. Neutral and failure stress state for triaxial compression and extension for pyramidal packing with parameter h=1.3

pyramidal packing are considered to be rigid. Consequently
the width parameter b will increase and the height parameter
h will decrease during triaxial compression.

If n=1.3 the mobilized friction angle can be
calculated by (Molenkamp & Nazemi, 2000):

. 3KP—4
sind = =,y (12)

The shear stress level can be calculated by:

S 3— sing

Thus, for %2=1.,3 the mobilized friction angle
¢ = 10.84 if the shear stress 7= (. This indicates the
mobilized friction angle at the neutral stress state . This
clarifies that the stress due to normal contact forces N
not only has an isotropic part but it can also have a
deviatoric part, depending on the fabric tensor.

During vertical compression the interparticle shear

forces T are T = Ntang, and during vertical extension

Table 1. The value of three parameters

Obtained value Neutral  |Compression| Extension
sin ¢ 0.188 0.504 -0.219
Friction angle(® ) 10.84 30.25 —-12.65
t/s 0.189 0.571 —-0.192

they are T= — Ntang,. If the maximum interparticie
friction angle ¢,=20" and %=1.3 the mobilized
friction angle and the shear stress level, #/s, are calculated
as shown Table 1.

Fig. 6 shows these stress levels together with yield
surface in the n-plane. In addition the relationship
between the interparticle shear forces and the interparticle
slip movement is indicated in general terms. The neutral

stress state is indicated in the z-plane as well.

4. Partially Saturated Random Packings of
Spheres

In random packings the number of contact points C.
The volume of the REV varies per particle selected
sufficiently large, e.g. containing 1000 particles. The
intergranular stress tensor in random packings for the

pyramidal packing is written as (Thornton, 2000):
U§I = lV NRRﬁjnin,--f— lV TRRét,n, (14)

where N® and T are the normal and tangential contact
force in random packing, respectively. The superscript R
indicates the random packing, ¥ is the volume of REV
and R is the radius of sphere, which is the same for all

spheres. N?, T* and R are constant.
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Equation (14) can be expressed as follows:

R
0,5' = 21\{/R Vij +

27;?’* ry (15)
where
vy = in,-n,- (16)
T = ﬁtin,- an

When expressed with respect to principal stress axis
the principal effective stress components can be obtained

according to equation (15) as:

R TR

o = ZAI,/R v+ 2 VR ™ (18)
R TR

o5 = 2]\17/R v + 2 VR 2] (19)
R TR

o5 = 21\{/R vg3 + . VR Ty (20

while the shear stresses are zero. For triaxial stress

state oh’ = of’, as also considered for the regular
pyramidal packing.

In random packings for low saturation and without the
application of any external load the interparticle forces
due to the individual water bridges includes only the
suction-induced normal force, namely NFf= /%, as
mentioned before for the regular pyramidal packing. The
suction-induced intergranular stress tensor according to
equations (18), (19) and (20) reads:

R
o8 = 2R, @1
o = 2EL, 22)
of = 2Ry, (23)

Each suction-induced effective stress ¢f° component
is depends on the fabric tensor component ;.
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5. Anisotropy of Granular Packing and Kine-
matic Rule in ALTERNAT

The effective stress ¢; in a granular material is due
to both the interparticle normal forces N and the
interparticle shear forces 7. However, in contrast to the
case of a regular packing of spheres in a granular
material both types of forces will always occur
simultaneously as a consequence of the equilibrium
conditions of all individual irregularly shaped particles
arranged in an irregular granular skeleton.

Nevertheless, the magnitude of the interparticle shear
forces T increase as the stress state approaches failure.
In such case at an increasing number of contacts the
failure criterion of interparticle slip must be reached,

namely:
T = Ntan ¢, (24)

in which ¢, is the interparticle friction angle.

Next consider the stress state for which the shear
forces T are minimum. In such case any very small
deformation will almost be elastic, because hardly any of
the interparticle forces will reach the local slip limit and
so hardly any interparticle contact will slip. This state is
indicated as the neutral state.

A so-called neutral stress state is indicated by:
U;} = p(aij + Sij) (25)

in which p is the mean effective stress, §; are the
second order isotropic tensor components and & are the
second order deviatoric tensor components describing the
deviatoric stress components at the neutral state in a
dimensionless form. Consequently £;8;=0.

The deviatoric stress with respect to the neutral stress
state is indicated by the additional deviatoric stress X
which is due to the change of the interparticle shear
forces T towards slip. Consequently any non-neutral

effective stress state can be expressed as:

o; = X;+ p(8; + &) (26)



In the ALTERNAT model (Molenkamp, 1982) this
decom- position is expressed as follows:

;= Ty + p&y @27

in which p£; is deviatoric stress representing the anisotropy
of the soil skeleton and,

T; = Xy + 0oy (28)

which represents the stress components inducing shearing

and volume change and is called the pseudo stress.
The neutral stress state ¢” specifies the centre of the

yield surface in the r-plane. The deviatoric component

X ; of the pseudo-stress T'; specifies the magnitude of
the yield surface in the z-plane.

At any stress state on the yield surface the plastic
stiffness is specified. The distribution of the plastic
stiffness within the maximum surface is specified through
the various anisotropy tensors and stress reversal points,
which together define a kinematic yield surface through
any stress point. In general the plastic stiffhess decreases
with increasing size of the yield surface.

Lade and Duncan (1975) give an expression of a yield
surface F, namely:

i
I— - 27 —f(x) = () (29)
3

F =
where f(yx) is the size of the yield surface, y is the

kinematic hardening parameter and 7; and I; are the

first and third invariants of the stress.

Fig. 7 shows a typical stress-strain response for cyclic
loading involving consecutive branches of triaxial
extension and compression. The shapes and locations of
the yield surfaces corresponding to every state indicated
in Fig. 7 are illustrated in Fig. 8.

Starting at the initial neutral KO stress point A, the
smallest yield surface increases in a pseudo isotropic way
as shown in Fig. 8(a) and Fig. 8(b). The deviatoric stress
decreases from point A along point B until reaching the
isotropic point C in Fig. 8(c). During reloading in triaxial

compression to point D the deviatoric stress is increased

Deviatoric stress t (kPa)

Deviatoric strain y

Fig. 7. Typical relationship between deviatoric strain and deviatoric
stress for cyclic loading

and a new small yield surface is created from the
isotropy point onwards as shown in Fig. 8(d). When the
active yield surface reaches the next encompassing yield
surface the latter is erased. When the deviatoric stress
increases further until point H then all yield surfaces are
erased except the largest isotropic yield surface as
indicated in Fig. 8(h).

When the material would be loaded monotonically
towards failure the kinematic yield surface would expand
towards the peak shear stress level and would shrink
subsequently to reach eventually the critical state.

Unloading from point H to a negative deviatoric stress
follows as e.g. point J in Fig. 7 causes the two yield
surfaces as shown Fig. 8(j). Points K, L, M and N are
located on a similar reloading stress-strain path as the
stress points D to H. During the unloading and reloading
sequence, expansion, erasure and generation of the

different yield surfaces can be observed.
6. Suction Induced Anisotropy Tensor in ALTERNAT

The suction-induced effective stress ¢%' has an

isotropic and deviatoric part as described by equations
(21), (22) and (23), namely

' Rey gR 4 4R~ R
. éu ¢§z $m° 231?1;r (v + v + vi3)

(30)

R
Yy =g -0 = —Z%L(Vu"’/%) €2y
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(a) At point A: initial state
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{m) At point M: Loading (n) At point N: Loading
Fig. 8. Typical vield surface movement for cyclic loading and triaxial stress states(Dots indicate current active stress location)
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If the fabric tensor with components u; can be
estimated and the mean suction-induced effective stress
¢%’ can be measured, then from the above equations the
corresponding deviatoric part of the suction-induced
stress can be calculated, namely:

o =8| S (32)
in which the interparticle suction-induced force %, the
radius of the particles R and the volume V of REV do
not occur.

In order to enable the application of this calculation
the fabric tensor needs to be estimated. Next the
suitability of a simple procedure to estimate the fabric
tensor using the ALTERNAT model is evaluated. To this
end Thornton's (2000) results of failure are used as a
basis for comparison to establish the quality of the
proposed simple ALTERNAT procedure.

The failure surface of Thornton's (2000) simulation in Fig.
9 is centred with respect to the isotropic point D in the »
-plane. During initial loading in triaxial compression the
fabric tensor increases from the isotropic state represented
by point D to the anisotropic state represented by point C
in Fig. 9 for a stress state corresponding to peak point A.
Thus for this peak stress A the corresponding fabric tensor

vield surface
(Compression)

(a) For triaxial compression

Fig. 9. The relation between fabric tensor and anisotropic tensor in terms of vield surfaces(Failure state of stress-@.
normal contact force contribution-: " and fabric stress component-lll)

is represented by point C.

The purpose of the following consideration is to find
a method to estimate the anisotropic tensor for the failure
stress state. Thornton above mentioned results can be
used to evaluate the suitability of such method. The
envisaged method is based on the ALTERNAT model
formulation. In fact it is proposed to consider the
anisotropic tensor obtained by subsequent unloading from
peak stress point A to the isotropic stress state
represented by point D in Fig. 9(a). In this figure the
resulting yield surface is indicated together with its
anisotropic tensor as represented by point B. The aim of
the exercise is to determine the difference between the
anisotropic tensor indicated by point B and the fabric
tensor represented by point C.

As point C has been calculated by Thomnton (2000) for
the random packing of spheres any deviation of point B
with respect to point C will mean a short coming of the
proposed concept for the ALTERNAT model.

Fig. 9(a) shows the current active yield surface
between the peak failure point A and isotropic point D
for unloading after triaxial compression. For unloading
after triaxial extension in the Fig. 9(b) the active yield

surface reaches from the bottom failure point G to the

isotropic point D.

]
(t/s) }-0.167

yield surface

(t/5)~-0.384 {extension)

(b) For triaxial extension

Anisortropic Modelling of Partially Saturated Soil Behaviour by Means of ALTERNAT 79



The axial and radial stresses for triaxial stress states
have been expressed in terms of isotropic stress s and
shear stress level ¢/s (Woodward & Molenkamp, 1999),

namely:

o= ol 4 &
o= s(F +1% L) (34

The size of the Lade and Duncan (1975) yield surface

is expressed in terms of parameter 7, namely:

3
7= % - 27 (35)
3

where for triaxial compression the first stress invariant is:
I = 0,4+ 20, (36)
and the third stress invariant is:
I = g,0 (37

Substituting the equations (33) and (34) into equations
(36) and (37), respectively, I, and [; are as follows:

Il=7‘%f+\/—-§jt+72%—7%t=5\/§ (38)
T

In Thornton's (2000) numerical simulations of the
behaviour of random packing of spheres the size of the
faiture surface for dense packings 7= 9.53. The
deviatoric stress level (z/s) corresponding to 7= 9.53
can be calculated by substituting equations (38) and (39)

into equation (35). The result is as follows:

7= U
FHEEE)

The deviatoric stress levels (¢/s) at the peak failure

5 — 27 = 9.53 (40)

surface for both triaxial compression and extension were

calculated as:

(f)m = 0.473 (41)

80 SHEXEB&3=28 H172 NS

and
(£) = —o.3m (42)

This enables to find the applied scale in Fig. 9.

The deviatoric stress levels (¢/s) at the centres of the
anisotropy yield surfaces, obtained from unloading from
peak states to the isotropic stress state, are indicated as
point B and F in Fig. 9. In order to calculate the
anisotropy of point B it should be recognised that in Fig.
9 the size 7.m Of the yield surface through points A
and D is the same.

In the ALTERN_AT model to find the anisotropy the
stress state should be represented as expressed by
equation (27). According to equation (27) the axial and

the radial stresses read:

0, = T, + pé, (43)
07 = T?’ + pér (44)

where T; is the pseudo stress as defined in equation
(28), p is the mean stress and &;; is an anisotopic tensor.
The term p&; is the deviatoric stress representing the

anisotropy of the soil skeleton. Thus,

A Ta O, — » Ea (45)
Tr = Oy — pér (46)

The size 7, Of yield surface for unloading from

compression as shown Fig. 9(a) can be determined from:

(T +2T)°

Neomp = T T2 27 (CY))]

in which 7, and T, are the pseudo stresses, which are

to be considered for both points A and D.
Substituting equations (45) and (46) into the equation
(47) leads to:

(TR O 1) N,
‘ (aa— 7%5,,)(0,— 7%5)

Neomp =

where



E.+ 26 =10 (49)

due to the anisotropy being a deviatoric tensor.
Substituting equations (33), (34) and (49) into equation
(48) leads to:

Teomp =

(B i-dre) ot -F L+ el
(vzﬂ/?s Fe)d et -

- 27
(50)

Since the value of 7, is the same for both points

A and D from the equation (50) the following expression
is obtained:

(31
where (t/s)4 = 0.473 and (t/s)p = 0.
Enabled the calculation of £, namely:
& = (.316 (52)
Subsequent application of equation (49) gives:
g™ = —0.158 (53)

The anisotropy of point D for the unloading from
triaxial extension has been obtained in the same way,
leading to:

8 = —~0.284, £ = (.142 (54)

Substituting the value of £ according to equations
(52) and (53) into equation (50) gives for the size of yield
surface 7., =2.43. Similarly, for &% according to
equation (53) the size of yield surface 7,,=1.56 is found.

Finally the deviatoric stress levels (#/s) of points B and F
can be calculated. It is noted that for these points the deviatoric
part of the pseudo stress X ; in equation (28) is zero, thus

X;=0. Consequently (see equation (43) and (44)):

o, = (&, +1), o, = p(§,+1) (55)
O, 0y = p(Ea—ér) (56)

where p = s/V3.
The deviatoric stress level (¢/s) can expressed as
(Woodward & Molenkamp, 1999):

[3e= 5 @ —gm 7

thus,

~F e e
=7§\[;:(0.316 +0.158) = 0.223 (58)

Likewise, the triaxial extension case can be elaborated as:

= 715 @ (62! — &2

=k 2 ozm -0 = —01  (59)

Since the deviatoric stress fevel (z/s) of points A,
B, F, and G are calculated the deviatoric stress level
(¢t/s) of points C and E may be estimated by
considering the same scale in Fig. 9. For the triaxial
compression the scaled estimation of point C can be
calculated by results of (¢/s), and (t/s)p, leading
to approximately (#/s), = 0.158. Similarly, for the
triaxial extension (¢/s)p = —0.201.

Consequently, the percentage of each shear stress level

for triaxial compression reduces to:

(¢/s)s _ 0.223 _ o (2]s)
(t7s)a = 0473 X100 = 47.1%, ;795

_ 0.158 — aa g0
= 0P 100 = 33.4% (60)

thus (#/s)p = 47.1% and (¢/s)¢ = 33.4% of (#/s)a.

For triaxial extension it reduces to:

(t/S)e _ =061 . 100

(t/s)c  —0.384 = 43.5%,
(¢/)p _ =0.201 e
(t[s)¢ ~ —0.384 100 = 52.3% 61)
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thus (#s)p = 43.5% and (#/s)p = 52.3% of (#s)¢.

The shear stress level of the anisotropic tensor of
ALTERNAT as a function of the failure value is 13.7%
larger for triaxial compression and 8.8% larger for triaxial
extension,

This demonstrates that the proposed simple ALTERNAT
concept of estimating the fabric tensor may not be accurate.
The deviator part of the suction-induced effective stress as
estimated by means of the proposed simple ALTERNAT
concept would be a factor (#/s)z/(t/s)c = 1.4 larger for
triaxial compression and a factor (#/s)p/(#/s)g =1.2
larger for triaxial extension than the corresponding deviatoric
part of the fabric tensor of the packings of spheres as
calculated by Thornton (2000).

Consequently the proposed simple ALTERNAT
procedure may over estimate the deviatoric part of the
suction-induced effective stress by possibly 20~40%. The
ideal result of the anisotropic tensor might be similar to the
fabric tensor. However, the estimation of the deviatoric part
of the suction-induced effective stress is different due to
analytical methods between Thornton's simulation and the
ALTERNAT modelling.

7. Conclusion

The behaviour of partially saturated soils is affected by
the movement of vapour, water and heat. The deformation
of loose soils includes phenomena as collapse due to wetting
and shrinkage due to drying. The interaction between
spheres, watér bridge and water have been discussed
starting from micromechanical considerations. In both
regular and random packings the fabric tensor has been
introduced and according to the micromechanical consid-
eration a generalised effective stress concept has been
formulated for partial saturation. It has been shown that
the fabric tensor affects strongly the suction-induced
effective stress in granular packings.

To describe these interactions in continuum mechanical
terms the anisotropy as applied in the ALTERNAT model
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has been reviewed. The anisotropic tensor in ALTERNAT
heavily depends on a kinematic rule designed to enable the
definition of the plastic soil stiffness for any stress
history and any stress rate. To arrive at a measure of the
suction-induced effective stress tensor in the ALTERNAT
model a simple formulation to estimate a fabric tensor
in the ALTERNAT model has been proposed. The results
according to this simple procedure, involving the definition
of an anisotropic tensor, are compared to the fabric tensor
as calculated by Thomton (2000) for random packings of
spheres. For failure in triaxial compression and extension as
considered, the method of defining a representative
anisotropic tensor in ALTERNAT has been shown to give
20~40% larger shear stress levels due to suction than
calculated by Thomton (2000) for random packings of
spheres.
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