High density plasma etching of novel dielectric thin films: Ta₂O₅ and (Ba,Sr)TiO₃ Hyun Cho[†] Department of Materials Engineering, Miryang National University Miryang 627-702, Korea (Received August 16, 2001) Abstract Etch rates up to 120 nm/min for Ta_2O_5 were achieved in both SF_6/Ar and Cl_2/Ar discharges. The effect of ultraviolet (UV) light illumination during ICP etching on Ta_2O_5 etch rate in those plasma chemistries was examined and UV illumination was found to produce significant enhancements in Ta_2O_5 etch rates most likely due to photoassisted desorption of the etch products. The effects of ion flux, ion energy, and plasma composition on $(\text{Ba}_7\text{Sr})\text{Ti}\text{O}_3$ etch rate were examined and maximum etch rate $\sim 90 \text{ nm/min}$ was achieved in Cl_2/Ar ICP discharges while $\text{CH}_2/\text{H}_2/\text{Ar}$ chemistry produced extremely low etch rates $(\leq 10 \text{ nm/min})$ under all conditions. Key words High density plasma etching, Dielectric thin film, Ta₂O₅, (Ba,Sr)TiO₁, ICP etching, UV illumination #### 1. Introduction There has been extensive effort over the past decade to develop novel dielectric thin films which can be a replacement for SiO2 and the leading candidates are Ta₂O₅ and (Ba,Sr)TiO₃ based on their high dielectric constant ($Ta_2O_5 : 25\sim35$, (Ba,Sr) $TiO_3 : 200\sim500$), low leakage current and high breakdown voltage characteristics [1-3]. These films have many application fields include a dielectric layer for storage capacitors in dynamic random access memory (DRAM) and gate insulators in metal oxide field effect transistors (MOS-FET) [4-5]. Recently, Ta₂O₅ has found new application fields as an etch mask during surface or bulk micromachining of Si, as an insulating layer in thin film electroluminescent display devices, and as a detection layer in biological and chemical sensors [6-8]. However, relatively little work has been done on dry etching of these thin films, which is preferred method of forming small structures due to the difficulty in wet etching while dry etching process for conventional SiO₂-based dielectric structures are well-developed. Previous reports have found relatively low etch rates for Ta₂O₅ in fluorocarbon-based plasma chemistries such as CF₄, C₂F₆, CHF₃ and CF₃Cl [9]. There have been two basic classes of electrode materials employed to date, namely, those based on elemental metals, predominantly Pt or those based on metallic oxides such as IrO_2 , RuO_2 , and high T_c superconductors [10]. The metallic oxides have a potential advantage in improving the fatigue performance of capacitors. In this work, $LaNiO_3$ was chosen as the metallic oxide for use with $(Ba,Sr)TiO_3$ films, since is displays several advantages as an electrode material [11-13]. In this paper we report on high density plasma etching of Ta_2O_5 and $(Ba,Sr)TiO_3$ thin films in a variety of different plasma chemistries, namely SF_6/Ar , SF_6/O_2 , Cl_2/Ar , and $CH_4/H_2/Ar$, and the significant enhancement in Ta_2O_5 etch rate by ultraviolet (UV) light illumination during inductively coupled plasma (ICP) etching. ## 2. Experimental Around 100 nm thick amorphous Ta_2O_5 and $200{\sim}300$ nm thick polycrystalline (Ba,Sr)TiO₃ films were deposited on (100) Si substrates by either plasma enhanced chemical vapor deposition (PECVD) at $350\,^{\circ}\text{C}$ or pulsed laser deposition (PLD, KrF excimer laser, 5 Hz pulse frequency) at $650\,^{\circ}\text{C}$. The precursors used for Ta_2O_5 were $Ta(C_2H_5O_5)$ and O_2 with total flow rates of 200 standard cubic centimeters per minute (sccm) and pressed powder targets were used for (Ba,Sr)TiO₃ deposition. The samples were patterned with either Apiezon wax or photoresist and were etched in a Plasma-Therm ICP 790 reactor. The plasma is sustained in a three-turn, cylindrical geometry source operating at 2 [†]Corresponding author Tel: 82-55-350-5456 Fax: 82-55-353-5457 E-mail: hcho@arang.miryang.ac.kr 232 Hyun Cho MHz and powers up to 1000 W. The samples were thermally bonded to a Si carrier wafer on He backside cooled, rf powered (13.56 MHz) chuck, at powers up to 350 W. The process pressure was held at 2~5 mTorr and gas loading into the source was controlled through mass flow controllers at a typical load of 15~ 20 sccm. For UV illumination during ICP etching, a Hg arc lamp (400 W) was installed on 1 in. diameter quartz window on top of the ICP source, ~20 cm from the sample position, and sample heating due to the UV illumination is minimal (< 10°C). The etch depths were examined by TENCOR stylus profilometry measurements after the removal of the mask, and used to calculate the etch rates. The error in these measurements is approximately ±10 %. The surface morphology and surface roughness of selected samples were examined with Atomic Force Microscopy (AFM, Digital Instrument Nanoscope III) using a Si tip in tapping mode. The selectivity of etch was calculated for Si over Ta_2O_5 . #### 3. Results and Discussion #### 3.1. ICP etching of Ta₂O₅ Figure 1 shows a comparison of Ta_2O_5 and Si etch rates, with the resultant selectivities, as a function of discharge composition in SF_6/Ar (left) and SF_6/O_2 (right). The etch rates for Ta_2O_5 increase more slowly with increasing SF_6 concentration than do the rates for Si, with the consequence that the maximum selectivity for Si over Ta_2O_5 is achieved in pure SF_6 discharges. The dc self-bias increases in both chemistries as the SF_6 concentration increases, indicating that the positive ion density is decreasing. Note that Ta_2O_5 etch Fig. 1. Etch rates and selectivities for Si over Ta₂O₅ in SF₆/Ar (left) and SF₆/O₂ (right) ICP discharges (750 W source power, 250 W rf chuck power, 2 mTorr), as a function of SF₆ concentration. Fig. 2. Etch rates and selectivities for Si over Ta₂O₅ in 10SF₆/5Ar (left) and 10SF₆/5O₂ (right) ICP discharges (250 W rf chuck power, 2 mTorr), as a function of ICP source power. rates of \sim 20 nm/min are achieved in the SF₆-based mixtures, at dc self-biases in the range of 215 to 290 V. We could not detect the etch products for Ta₂O₅ with optical emission spectroscopy (OES), but assume they are probably TaF_x and O₂. In the case of Si, we readily observed the SiF_x etch products, with emission lines in the range of 400~430 nm. The effect of ICP source power on the Ta_2O_5 etch rates is shown in Fig. 2 for fixed plasma composition. The Si etch rate increases either modestly or not all over the range of $300{\sim}1000$ W, while the Ta_2O_5 etch rate tends to decrease at the higher powers. This decrease is at least partially caused by the fall-off in dc self-bias, which is suppressed as the positive ion density in the discharge increases at higher powers. It is clear that because Si etches in atomic fluorine even without ion bombardment, whereas Ta_2O_5 does not, there will always be a faster etch rate for Si in non-polymer-forming plasma chemistries. In high density plasma etching the rf chuck power controls the incident ion energy approximately equal to the sum of the plasma potential (roughly 25 V in this tool, from Langmuir probe measurements) and the dc self-bias. It is expected an increase in rf chuck power increases the etch rates of both Ta₂O₅ and Si because of the improved efficiency of ion-assisted reactions. Figure 3 shows the trend consistent with this expectation for both SF₆/Ar and SF₆/O₂. Selectivity for Si over Ta₂O₅ is found to decrease with increasing ion energy because of the larger contribution of physical process relative to chemical component of the etching. The surface morphologies of the etched Ta₂O₅ were examined by AFM and Fig. 4 shows the measured Fig. 4. RMS roughness values of Ta₂O₅ and Si surfaces before and after etching in 10SF₆/5Ar and 10SF₆/5O₂ ICP discharges (750 W source power, 250 W rf chuck power, 2 mTo_{TT}). root-mean-square (RMS) roughness measured over 1 $\rm mm^2$ area after exposure to $\rm SF_6/Ar$ or $\rm SF_6/O_2$ discharges. The $\rm Ta_2O_5$ surface roughness values are unchanged from the unetched control values, whereas the Si shows some etch-induced texture structure on the surfaces. In each case the etch was performed for 30 secs corresponding to etch depths of ${\sim}45\,\rm nm$ for $\rm Ta_2O_5$ and ${\sim}250\,\rm nm$ for Si. Figure 5 shows the effects of source power (left) and rf chuck power (right) on the ${\rm Ta_2O_5}$ and Si etch rates at fixed plasma composition ($10{\rm Cl_2/5Ar}$). The etch rates for both materials decrease at high values of either parameter, a trend often observed in high density plasma etching and often ascribed to ion- Fig. 3. Etch rates and selectivities for Si over Ta₂O₅ in 10SF₆/5Ar (left) and 10SF₆/5O₂ (right) ICP discharges (750 W source power, 2 mTorr), as a function of rf chuck power. 234 Hyun Cho Fig. 5. Etch rates and selectivities for Ta₂O₅ over Si in 10Cl/5Ar ICP discharges as a function of source power (left) or rf chuck power (right). assisted desorption of the reactive neutrals before they can react with the substrate [14]. The Ta_2O_5/Si selectivities again fall in the range of 0.3-1 over the whole range of conditions investigated. ### 3,2. The UV light enhancement of Ta₂O₅ dry etch rates Figure 6 shows the Ta_2O_5 etch rates in $10SF_6/5Ar$ discharges as a function of ICP source power (left) and rf chuck power (right). At the low chuck power condition (100 W) the etch rate enhancement with UV illumination increases with source power and reaches a factor of approximately 2 in the range of $500\sim750$ W. By sharp contrast, at higher rf chuck power conditions (Fig. 6, right) there is essentially no increase in etch rate as a result of UV illumination. At higher ion energies the etch rates decrease both with and without UV illumination due to the ion-assisted removal of the reactive neutrals [14]. Several groups have reported that UV irradiation during dry etching dramatically enhances the etch rate of Cu in Cl₂-based high density plasmas, through transforming involatile CuCl_x etch products into more volatile species (e.g. Cu₂Cl₃) and subsequent non-thermal desorption of these species. [15] In the case of Ta₂O₅, an analogous situation would involve photodesorption of TaF_x species since the oxygen should be removed as O₂ or oxyfluorides. In the case of Cl₂/Ar discharges, Fig. 7 shows that UV illumination did lead to faster Ta_2O_5 etch rates at moderate source power (left) and rf chuck powers (right). This seems plausible from the following scenarios- at very high ion fluxes or energies, the $TaCl_x$ etch product is being efficiently removed by sputterassisted desorption whether or not the UV illumina- Fig. 6. Ta_2O_5 etch rates with and without UV illumination in $10SF_6/5$ Ar ICP discharges as a function of source power (left) or rf chuck power (right). Fig. 7. Ta_2O_5 etch rates with and without UV illumination in $10Cl_2/5$ Ar ICP discharges as a function of source power (left) or rf chuck power (right). tion is being used, whereas at very low ion fluxes or energies the etch rate may be controlled by diffusion of the etch products through a chlorinated selvedge layer. For the Cl_2 -based plasma chemistry the physical process dominates the etch process and UV illumination is less important over a broad range of conditions than with SF_6 plasma chemistry. ## 3.3. ICP etching of (Ba,Sr)TiO₃ Figure 8 shows the rf chuck power dependence of (Ba,Sr)TiO₃ and LaNiO₃ etch rates in 10Cl₂/5Ar (left) or 5CH₄/10H₂/5Ar (right) discharges at fixed source power (750 W) and pressure (2 mTorr). In 10Cl₂/5Ar discharges, the etch rate of (Ba,Sr)TiO₃ increases with the higher ion bombardment energy up to approximately 250 W rf chuck power and decreases thereafter. This trend is again, as mentioned earlier, ascribed to ion-assisted desorption of the adsorbed chlorine neutral before the etch products are formed on the surface. In the case of LaNiO₃ we do not observe the decrease in etch rate at higher rf chuck powers, suggesting the amount or stability of the adsorbed chlorine is different than for (Ba,Sr)TiO₃. By sharp contrast, extremely low etch rates (≤10 nm) were obtained for both (Ba,Sr)TiO₃ and LaNiO₃ in 5CH4/10H₂/5Ar discharges and the etching is dominated by the physical sputtering since there is no apparent chemical contribution to the etching, with the results similar to those obtained with pure Ar plasmas. Fig. 8. Etch rates for (Ba,Sr)TiO₃ and LaNiO₃ in 10Cl₂/5Ar (left) or 5CH₄/10H₂/5Ar (right) ICP discharges (750 W source power, 2 mTorr) as a function of rf chuck power. 236 Hyun Cho Fig. 9. Etch rates for (Ba,Sr)TiO₃ and LaNiO₃ in 10Cl₂/5Ar (left) or 5CH₄/10H₂/5Ar (right) ICP discharges (250 W rf chuck power, 2 mTorr) as a function of source power. Fig. 10. SEM micrographs of features etched into (Ba,Sr)TiO₃ (left) and LaNiO₃ (right) using 10Cl₂/5Ar ICP discharges (750 W source power, 250 W rf chuck power, 5 mTorr). The influence of ICP source power on the etch rates of both (Ba,Sr)TiO₃ and LaNiO₃ in 10Cl₂/Ar (left) or 5CH₄/10H₂/5Ar (right) discharges at fixed rf chuck power (250 W) and pressure (2 mTorr) is shown in Fig. 9. In high density plasma etching, increasing the source power suppresses the dc self-bias because of the higher conductivity of the plasma and this leads to two competing effects, namely an increase in ion flux but a decrease in ion energy. This competition is reflected in an initial increase in (Ba,Sr)TiO3 etch rate in 10Cl₂/5Ar mixtures, followed by a decrease when the dc self-bias falls below approximately 270 V. Once again the LaNiO3 etch rate shows different behavior, with a continuing increase in etch rate over the range of source powers we investigated, 5CH₂/10H₂/5Ar mixtures again produced low etch rates for both materials under all conditions most likely due to the deposition of a polymer layer from the CH₄, which may act to shield the surface from the ion bombardments. Since high density plasma etching for (Ba,Sr)TiO $_3$ and LaNiO $_3$ in $10 \text{Cl}_2/5 \text{Ar}$ discharges is ion-driven etching under all conditions investigated, highly anisotropic features can be formed with a minimized mask erosion, and SEM micrographs of the features etched into (Ba,Sr)TiO $_3$ (left) and LaNiO $_3$ (right) are shown in Fig. 10. A 7 μm thick photoresist mask was used as a mask material and about one-third of the resist remained at the completion of the etching. ## 4. Conclusions A number of different inductively coupled plasma chemistries (SF₆/O₂, SF₆/Ar and Cl₂/Ar) were examined for dry etching of Ta_2O_5 and maximum etch rates ~ 120 nm/min were achieved in fluorine- or chlorine-based mixtures. The etch selectivities for Si over Ta_2O_5 of ~ 6 were achieved in SF₆ ICP discharges since Ta_2O_5 etch rates were always slower than those of Si and the reverse selectivity was not achieved. The UV illumination during ICP etching of Ta_2O_5 in both SF_6/Ar and Cl_2/Ar plasma chemistries produces significant enhancements in etch rates. The increased etch rates are likely due to photoassisted desorption of the TaF_x and $TaCl_x$ etch products. The use of UV illumination is an alternative to employing elevated temperatures during etching to increase the volatility of the etch products and may find application where the thermal budget should be minimized during processing. Two common semiconductor plasma chemistries, namely Cl_2/Ar and $\text{CH}_4/\text{H}_2/\text{Ar}$, have been examined for dry etching of thin films of (Ba,Sr)TiO₃ and LaNiO₃. The etching in both chemistries is physically dominated, but only Cl_2/Ar produces reasonable etch rates, and smooth and anisotrpic pattern transfer was performed. #### References - [1] B.C. Lai and J.Y. Lee, Leakage Current Mechanism of Metal-Ta₂O₅-metal Capacitors for Memory Device Applications, J. Electrochem. Soc. 146 (1999) 266. - [2] K.W. Kwon, C.S. Kang, S.O. Park, H.K. Kang and S.T. Ahn, Thermally Robust Ta₂O₅ Capacitor for the 256-Mbit DRAM, IEEE Trans. Electron. Dev. 43 (1996) 919. - [3] S.O. Kim and H.J. Kim, Fabrication of n-metaloxide Semiconductor Field Effect Transistor with Ta₂O₅ Gate Oxide Prepared by Plasma Enhanced Metalorganic Chemical Vapor Deposition, J. Vac. Sci. Technol. B 12 (1994) 3006. - [4] H. Shimada and T. Ohmi, Current Drive Enhancement by Using High-permittivity Gate Insulator in - SOI MOSFET's and its Limitation, IEEE Trans. Electron. Dev. 43 (1996) 431. - [5] K. Kukli, J. Ihances, M. Ritala and M. Leskela, Properties of Ta₂O₅-based Dielectric Nanolaminates Deposited by Atomic Layer Epitaxy, J. Electrochem. Soc. 144 (1997) 300. - [6] A.K. Chu, Y.S. Huang and S.H. Tang, Room-temperature Radio Frequency Sputtered Ta₂O₅: A New Etch Mask for Bulk Silicon Dissolved Processes, J. Vac. Sci. Technol. B 17 (1999) 455. - [7] K. Kukli, J. Ihances, M. Ritala and M. Leskela, Tailoring the Dielectric Properties of HfO₂-Ta₂O₅ nanolaminates, Appl. Phys. Lett. 68 (1996) 3737. - [8] Y. Kuo, Reactive Ion Etching of Sputter Deposited Tantalum Oxide and its Etch Selectivity to Tantalum, J. Electrochem. Soc. 139 (1992) 579. - [9] S. Seki, T. Unagami, and B. Tsujiyama, Reactive Ion Etching of Tantalum Pentoxide, J. Electrochem. Soc. 130 (1983) 2505. - [10] S.M. Hong, S.M. Rhim, H.J. Bak and O.K. Kim, Deposition Characteristics of (Ba,Sr)RuO₃ Thin Films Prepared by Ultrasonic Spraying Deposition, J. Kor. Assoc. Crystal Growth 11 (2001) 111. - [11] C.R. Cho, D.A. Payne and S.L. Cho, Solution Deposition and Heteroepitaxial Crystallization of LaNiO₃ Electrodes for Integrated Ferroelectric Devices, Appl. Phys. Lett. 71 (1997) 3013 - [12] M.S. Chen, T.B. Wu and J.-M. Wu, Effect of Textured LaNiO₃ Electrode on the Fatigue Improvement of Pb(Zr_{0.53}Ti_{0.47})O₃ Thin Films, Appl. Phys. Lett. 68 (1996) 1430. - [13] A. Li, C. Be, P. Lu, D. Wu, S. Xing and N. Ming, Fabrication and Electrical Properties of Sol-gel Derived BaTiO₃ Films with Metallic LaNiO₃ Electrode, Appl. Phys. Lett. 70 (1997) 1616. - [14] R.J. Shul, G.B. McClellan, R.D. Briggs, D. Rieger, S.J. Pearton, C.R. Abernathy, J.W. Lee, C. Constantine and C. Barrat, High-density Plasma Etching of Compound Semiconductors, J. Vac. Sci. Technol. A 15 (1997) 633. - [15] K.-S. Choi and C.-H. Han, Low Temperature Copper Etching Using an Inductively Coupled Plasma with Ultraviolet Light Irradiation, J. Electrochem. Soc. 145 (1998) L37.