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ON GRAM’S DETERMINANT
IN 2-INNER PRODUCT SPACES

Y. J. CHO, M. MATIC, AND J. PECARIC

ABSTRACT. An analogue of Gram’s inequality for 2-inner product
spaces is given. Further, a number of inequalities involving Gram’s
determinant are stated and proved in terms of 2-inner products.

1. Introduction

The concepts of 2-inner products and 2-inner product spaces have
been intensively studied by many authors in the last three decades. A
systematic presentation of the recent results related to the theory of 2-
inner product spaces as well as an extensive list of the related references
can be found in the book [1]. Here we give the basic definitions and the
elementary properties of 2-inner product spaces.

Let X be a linear space of dimension greater than 1 over the field
K = R of real numbers or the field K = C of complex numbers. Suppose
that (-,-|') is a K-valued function defined on X x X x X satisfying the
following conditions:

(2I;) (z,z|z) > 0 and (z,z|z) = 0 if and only if z and z are linearly
dependent,

(2L) (z,z|2) = (2,2|z),

(213) (y’xlz) = (x,y]z),

(2L;) (az,ylz) = a(z,y|z) for any scalar a € K,

(2Ls) (z +2',yl2) = (z,y[2) + (2', y]2).
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(-,|-) is called a 2-inner product on X and (X, (-,+|-)) is called a 2-inner
product space (or 2-pre-Hilbert space). Some basic properties of 2-inner
product (-,|-) can be immediately obtained as follows:

(1) If K = R, then (2I3) reduces to

(y,z]2) = (2, 9l2)-
(2) From (2I3) and (214), we have
(0,y]z) =0, (z,0]2) =0

and also
(1.1) (z,aylz) = alz,ylz).

(3) Using (2I3)—(2I5), we have

(z,2lz £ y) = (z £y, 2 T y|2) = (z,2[2) + (y,y]2) £ 2Re(z, yl2)

and

(1.2 Re(z,ul2) = 4{(z, 2k +v) - (2.2lz = )

In the real case K = R, (1.2) reduces to

[(273‘33 + y) - (z,z|m - y)]

o |

(1.3) (z,ylz) =
and, using this formula, it is easy to see that, for any a € R,

(1.4) (z,ylaz) = o*(z,yl2).

In the complex case K = C, using (1.1) and (1.2), we have
. 1 . :
Im(m,y]z) - Re[—z(a:,y|z)] = Z[(zv Z“T + Zy) - (Z’ Z|.T - Zy)]a
which, in combination with (1.2), yields

(15) (e,]2) = + [z 2lato) (2, 2lo-w) (o 2laiv) =z, le—iw)]
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Using the above formula and (1.1), we have, for any a € C,
(1.6) (z,ylaz) = |of*(z,yl2).
However, for o € R (1.6) reduces to (1.4). Also, from (1.6) it follows
that
(z,y/0) = 0.
(4) For any three given vectors z,y,z € X, consider the vector u =
(y,y|z)x—(z, y|2)y. By (21,), we know that (u,u|z) > 0 with the equality

if and only if v and z are linearly dependent. The inequality (u,u|z) > 0
can be rewritten as

(1.7) (W, yl2)[(z, 2l2) (y, yl2) — |(2,y12)*] 2 0.

For z = 2, (1.7) becomes

~(y,912)|(z,912)* > 0,
which implies that

(1.8) (2,92) = (y, 2|2) = 0

provided y and z are linearly independent. Obviously, when 3 and z are
linearly dependent, (1.8) holds too. Thus (1.8} is true for any two vectors
y,2 € X. Now, if y and z are linearly independent, then (y, y|z) > 0 and,
from (1.7), it follows

(1.9) (2, y12)[* < (2,2]2)(y, yl2).

Using (1.8), it is easy to check that (1.9) is trivially fulfilled when y and
z are linearly dependent. Therefore, the inequality (1.9) holds for any
three vectors x,y,z € X and is strict unless the vectors u = (y,y|z)x —
(x,y|2)y and z are linearly dependent. In fact, we have the equality in
(1.9) if and only if the three vectors z,y and z are linearly dependent.
In any given 2-inner product space (X, (-,-|+)), we can define a function
I-1-1 on X x X by

(1.10) ]zl = v/ (2, |2)

for all z,z € X. It is easy to see that this function satisfies the following
conditions:

(2Ny) |lz]z|l > 0 and ||z|z| = O if and only if z and z are linearly
dependent,

(2N2) |lzlz]| = llz|z|l,

(2N3) |laz|z]] = |a|||z|z|| for any scalar o € K,

(2N4) [lz + 2'|z|| < Jlz|z]| + |||z
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Any function || - | - || defined on X x X and satisfying the conditions
(2N;)—(2Ny) is called a 2-norm on X and (X, | -|-||) is called a linear
2-normed space. Whenever a 2-inner product space (X, (-,-|-)) is given,
we consider it as a linear 2-normed space (X, || - | - ||) with the 2-norm
defined by (1.10).

A natural extension of the Cauchy-Schwarz-Bunjakowsky inequality

(1.11) (z,9)1? < (z,2)(y,y)

in inner product space (X, (-,-)) is the Gram’s inequality

(1.12) [(zy, 22, ,2%) 20,
which holds for any choice of vectors z1,z9,--- ,xx € X and is strict
unless 1,2, -+ , T are linearly dependent. Also, there are a number

of inequalities of various types related to Gram’s determinant

(z1,71) (x1,22) ... (21,2k)
F(er g 2y) = (3027.961) (272,.562) coo (w2, TH)
(zk,z1) (zy22) ... (2, T%)

(see, for instance, [2, pp. 381-385] or [3, Ch. XX]).

The inequality (1.9) is an analogue of the Cauchy-Schwarz-Bunjakow-
sky inequality (1.11) for 2-inner product spaces.

The aim of this paper is to give an analogue of Gram’s inequality
(1.12) for 2-inner product spaces as well as the analogues for 2-inner
product spaces of some classical inequalities involving Gram’s determi-
nant.

In Section 2, we give a definition of Gram’s determinant in 2-inner
product space and then prove a version of Gram’s inequality (1.12) for
2-inner product spaces. Also we give a versions of Parseval’s identity
and of Bessel’s inequality in 2-inner product spaces.

In Section 3, we prove some further inequalities involving 2-inner
product analogue of Gram’s determinant.

Section 4 is devoted to a version for 2-inner product spaces of the
well known inequality which can be regarded as a generalization via
Gram’s determinant of Cauchy-Schwarz inequality for sequences (see,
for instance, [3, p. 599)).

In Section 5, we give a 2-inner product analogue of one well known
result which can be regarded as a generalization via Gram’s determinant
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of Bessel’s inequality (see [3, pp. 396-397]). Also we give two interesting
consequences of this result (Corollary 6 and Theorem 8) which are in
turn 2-inner product analogues of the known classical results (see [3, pp.
603-604]).

2. Gram'’s inequality

Let (X, (-,+]-)) be 2-inner product space over the field of real numbers
K = R or the field of complex numbers K = C. For any given vectors

T1,%2, - Tk € X and 2 € X, define a matrix G(z1, 2, -+ ,zk|2) by
(1, 21]2)  (@1,2202) -+ (21,2k]2)
(z2,21]2)  (T2ym22) -+ (2,24]2)
G(IEl,.’L‘2, e ,.'L'k’Z) -
(xk"xllz) ($k7x2|z) ($k7$klz)
and Gram’s determinant I'(x1, z, - - - , 21 |2) of the vectors z1, 23, - - - , 2y

with respect to the vector z by

[(z1, 22, ,zk|2) = det G(z1, 2, , xk|2)
(fL'l,CL'1!2) (.’Z'l,CL'2IZ) (:L'l,l'kIZ)
(2.1) (T2, 21|2) (225 72|2) -+ (2, 24]2)
(zk,21]2) (T3 T2]2) - (T, Tk|2)
THEOREM 1. Let x1,29,- - ,2x € X and z € X be given vectors in

2-inner product space X. Then we have
(2.2) I(xy,z2, -+ ,xk]|2) > 0.

Moreover, the equality holds in (2.2) if and only if the vectors z,, o, ,
Tk, 2 are linearly dependent.

Proof. First we consider the case of the equality in (2.2). Suppose

that the vectors x1,x9, - -+ , 2k, z are linearly dependent. Then we have
(2.3) a1 x1+ - oz + Pz =0
for some scalars a;,--- ,ax,3 € K and at least one of them is different

from zero. From (2.3), it follows that

(121 + - + gy + B2, 25|2) = 0



1130 Y. J. Cho, M. Matié¢, and J. Pecari¢

for j =1,--- ,k, that is, since (z,z,|z) =0,
(2.4) ay(zy,zj|z) + -+ ap(Trr|z) =0

for j = 1,---,k. fa; = - = a, = 0 and 3 # 0, then, from
(2.3), we have z = 0 and obviously I'(z1,z2,- -+ ,2%]|0) = 0. If a; # 0
for at least one j € {1,---,k}, then the system (2.4) has a nontriv-
ial solution (aq,- - ,q), which means that the matrix of the system
G(zy,xo, -+ ,Tk|2z) must be singular and hence I'(z1, 22, - ,2x|2) = 0.
So, if the vectors 1,2, - , Tk, z are linearly dependent, then I'(z1, z2,

-, xzElz) = 0.

Conversely, suppose that I'(zq,z2, -+ ,zk|z) = 0. Then the system
(2.4) has a nontrivial solution (v, -+, a4). But (2.4) can be rewritten
as

(2.5) (zy + -+ ek, zj]2) =0

for j = 1,---,k. Multiplying the j*" equation in (2.5) by &; and then
summing over j = 1,--- , k, we have

(o + - + agzr, 0@ + - -+ + api|z) = 0.

This means that the vectors o;z; + - -+ + a2z and z are linearly depen-
dent so that there are the scalars a,3 € K such that a # 0 or 3 # 0
and

alayzy + -+ agzk) + Bz = 0.

Since a; # 0 for at least one j € {1,--- , k}, we conclude that the vectors
Z1,%y,- -+, Tk, z are linearly dependent.

Suppose that the vectors z1,x2,--- , Tk, 2 are linearly independent.
Then, for r € {1,--- ,k}, the vectors 21,22, - , 2.,z are linearly inde-
pendent and

[(z1,29, - ,2:]2) #0

for r = 1,--- , k. Define the vectors y;, -,y as
Yyi=I1
and
$'1
(2.6) Yr = Glar,-@raalz) :z:r:_l

(xw'amllz)"'(xmmr - 1]z) ‘ Lr
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for r = 2,.-. k. Expanding the determinant in (2.6) over the last
column, we have

(2.7) Yr =11+ 01 Teoy + (21, 2o |2)2y
and
(Yr,zs|2)
=y (x1,Zs]2) + - + o1 (Tr-1, T5]2)
+T(z1, -, 2ro]2) (@0, 24]2)
(2.8) T
Gz, ,xr_1]2 :
_ (z1 1|2) o
(xr,x1]2) - (2, — 1]2) ‘ o
forr=2,--- Jkand 1 < s <r. If1 <s < then the determinant in

(2.8) has two equal columns and hence
(yryxslz) =0, 1<s<
For s = r, it follows from (2.8) that
Wr zr|2) =T(21, -+, 20]2).
Now, using the expansion (2.7) and the above equalities, we have

(y7'ayr|2) = F(xlv T axT—l'z)(xrvyr[Z)

=I(z1, 2 —1|2)T (21, - -+ 2 |2)
#0
and hence
(yr,yrkz) >0
for r =2,.-. k. In fact, we have
(29) P(-’L‘l,"‘ ,xrlz) — (yT"yT‘Iz) — (y'f'7y7"z)
D(zy, -, @ralz)  Dlxy,-  20-1]2)

forr=2,--- ,k. Now

['(z1]|2) = (z1,21]2) > 0,
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by the assumed independence of z; and z. Using this and (2.9) with
r = 2, we have further

I(z1,22]2) = (M) _ (y2,212)

I'(z1]2) ~ T(zi2)

Continuing in this way, we conclude that
[(zy, - ,2r]2) >0

for all r € {1,--- ,k}. This completes the proof. a

REMARK 1. The inequality (2.2) is an analogue of the Gram’s in-
equality for 2-inner product spaces. In the case when k = 2, (2.2)
reduces to

(3?1,1131|Z)(332,$212) - 1(371’1'2'2)12 >0

with the equality if and only if the vectors z;,x2, 2 are linearly depen-
dent. This is just the inequality (1.9) so that Gram’s inequality can be
regarded as a generalization of Cauchy—-Schwarz-Bunjakowsky inequal-

ity.

Note that, in the case when the vectors z1,z2, - , Tk, 2 are linearly
independent, we can define the vectors yi,y2, - ,yx as in the proof
above and, from (2.7), it follows that

L(ylvaa e 7y7‘) = L($1,x2, Tt 71“1‘)
for r =1,--- ,k. Moreover, from the proof above, we see that
(yryyslz) =0, 1<s<r<k.

Also we have
|12

lyil2]|* = (y1,y1l2) = I'(z1]2)

and
lyel2ll®> = (yr yrl2) = T(z1, -+ 2eo1]2)D (@0, 20l2)
forr=2,--- k.

Now, the following result is evident:
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COROLLARY 1. Let z1,z2, -+ ,xk,2 € X be given linearly indepen-
dent vectors in 2-inner product space X. Let the vectors y,y2,** , Yk
be defined as in the proof of Theorem 1. Define the vectors ey, eq, - , ey,
as

Y1 I
€L = = 1/2
lgalzll  T(zil2)
and
e = yr = yr
"yl T Ty, 2] 2)] 2
forr =2,--- k. Then we have

(i) Forr,s € {1,2,---  k},

0 forr +#s,
1 forr=s.

(e, sl2) = brs = {

(ii) Forre {1,2,---,k},

L(€1,€2,' te ve’r') - L(.’L‘l,ﬁfQ,' ot 7337‘)'

REMARK 2. Note that, in the case when there is an infinite sequence
Z1, T3, - of linearly independent vectors in the space X, we can take any
vector z € X such that z ¢ L(x1, 9, -+ ) and then construct an infinite
sequence of vectors ej, ez, - such that the conclusions of Corollary 1
are valid for all r,s € N.

Suppose now that Y is a finite-dimensional linear subspace of 2-inner
product space (X, (-,-|-)) and that z € X issuch that z ¢ Y. If dimY =

n, then, by the Corollary 1, we can construct the base {e;,--- ,e,} for
Y such that
(2.10) (€3, €512) = b

for all 4,5 € {1,--- ,n}.
Any vector z € Y has unique representation of the form z = Sor L e
Using (2.10), we have (z,e;|z) = a; forall j =1,--- ,n so that

n

T = Z(m,eﬂz)ei

=1
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for all z € Y. Therefore, if z,y € Y are two given vectors from the
subspace Y, then, using (2.10), we have

(x,y|z) = (Z z ezl ezaZ(yaeJI e]l )
(2.11) = ZZ z,€:12)(y, ¢;12)0;

i=1 j=1

mn
= Z(mv ei\Z)(ei,yIZ),
i=1

which is an analogue of Parseval’s identity for 2-inner product spaces.
Especially, for any z € Y, (2.11) with y = = becomes

lz]2|* = (2, 2l2) ZI z,eil2)[%.

Further, for any x € X, define the vectors u € Y and v € X as

n

u = Z(w,eilz)ei, V=2 — U

i=1
For § =1,--- ,n, we have

n n

(v,e5|2) = (a: - Z(z,eﬂz)e,’,ejlz) (z,ejlz) — Z x,e;|z)0;; =0,
g=1 i=1

which implies that (v,y|z) = 0 for every y € Z.

THEOREM 2. LetY be a finite-dimensional linear subspace of 2-inner
product space X and let z € X is such that z ¢ Y. Then every x € X
can be uniquely represented as

T =u-+uv,

where u € Y and v € X with (v,y|z) =0 forally €Y.
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Proof. The existence of the proposed representation for x € X is
already proved. It remains to prove the uniqueness. So, suppose that

z=utv=u+7,

where u,u’ € Y and (v,y|z) = (v',y|z) = 0 for all y € Y. Then we have
v—v =u —-ueyY

and

(u—u'u—1z) =(v—-v,u—1l2) = (v,u —v|z) - (V,u—-v|z) =0.

This implies that « — u’ and z are linearly dependent, which is possible
only when u—u’ = 0 since z ¢ Y. Thus, we must have v—v' = u'—u = 0,
that is v = v’ and u = «’. This completes the proof. O

COROLLARY 2. Let Y be a finite-dimensional linear subspace of 2-
inner product space X and let z € X issuch that z ¢ Y. If {e1, -+ ,en}
is the base for Y such that (2.10) holds, then, for any = € X,

n

(2.12) >l el2)® < 2]

i=1
The equality in (2.12) holds if and only if ¢ = uw+ vz for some u € Y

and some scalar v € K.

Proof. By Theorem 2, every = € X can be represented as £ = u + v,
where u € Y and (v,y|z) =0 for all y € Y. More precisely, we have

T=u+wv, u=u=Z(m,ei|z)ei, (v,ulz) =0,

t=1
which yields that
2|21 = (u+ v, u +v]2)
= (u,u|2) + (u,v]2) + (v, ul2) + (v,]2)
= [lulz]|? + |lv]=])?

> [lulz]?

= Zl(w,eilzw-
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Thus (2.12) is valid. Further, it is evident that we have the equality if
and only if ||v|z]|> = 0, which is equivalent to the requirement that v
and z are linearly dependent, that is, av + 8z = 0 for some scalars «
and B with o 5 0 or 3 # 0. Now, a = 0 would imply that 3 # 0 and
z = 0, which can not be true. So we have a # 0 and v =2z —u = —gz,
that is, = u — gz. This completes the proof. O

REMARK 3. The inequality (2.12) is an analogue of Bessel’s inequal-
ity for 2-inner product spaces. It is easy to see that it is also valid for an
infinite sequence of vectors. Namely, if €1, es, - is an infinite sequence
of vectors from X and z € X such that

z ¢ Lier, ez, )

and

(e €j]2) = &y
for all 4,7 = 1,2,-.-, then we can apply Corollary 2 to the subspace
Y = L(ey, -, e,) to obtain the inequality (2.12) for any fixed n € N.

When n — oo, we have that
o0
> @ eil2)]? < [lalz|?
i=1

for any z € X.

3. Some inequalities involving Gram’s determinant

Throughout this section, we assume the notation from the previous
two sections. We prove some inequalities involving Gram’s determinant
in 2-inner product spaces defined by (2.1). First we need one technical
result. ‘

LEMMA 1. Let Y be any linear subspace of 2-inner product space X
and let z € X such that z ¢ Y. Suppose that z € X can be represented
as

r=u-+uv,

where u € Y and (v,y|z) =0 for all y € Y. Then, for arbitrarily chosen
vectors x1, - , T, € Y, we have

(3.1) I(z,z1, - yxm|z) =T (u, 21, ,mnllz)+}|v|z|]2f(:ﬂ1,--- s Tm|2).
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Especially, if u € L(z1, - ,Z,), then
(3.2) D(z, 21, ,Tm|2) = |v|z|IPT (21, -, 2m]|2).

Proof. Under given assumptions, we have, for all j =1,--- ,m,
(zj,2]2) = (zj,u +v[2) = (z;,u]2), (z,2;]2) = (u+v,zjlz) = (u, zj|2).
Also it follows that

(z,z]2) = (u+v,u + v|2) = (u,u|z) + (v,v|2) = (u,u|z) + ||v|zl]2.

Using this and the elementary properties of determinant, we have

(wyul2) + vlzl?  (w,z1]2) - (u,zm|2)
(z1,u|z) (x1,z1]2) - (T1,2m]?)
P(x,l'l,"' axmlz)"_‘ . .
(xm’ulz) (xmvm‘llz) t (l?m,.’l,‘m|z)
(U,UIZ) (U,:L'1|Z) o (U,l‘m|Z)
(T ulz)  (z1,21]2) - ($17$m|2)
(xm,u|z) (xm7371]z) et (QZm,.’IZm|2’)
||U|ZH2 (u’l'llz) e (u,meZ)
0 (331,931|Z) (l‘l,icmlz)
+
0 (@m,z1]2) o (T, Tm|2)
=T(u,z1," , Tm|2) + ||Jv|2]|°T (21, - - - s Zm|2),
which is just the identity (3.1). The identity (3.2) follows directly
from (3.1) since v € L(zy,---,z,,) implies that u,z,, - ,Z.,,2 are
linearly dependent and hence I'(u,zy, - ,%,,]2z) = 0. This completes
the proof. 0O

Now, we can prove some inequalities involving Gram’s determinant.

THEOREM 3. Letxy, -, 2, € X be given vectors in 2-inner product
space X all different from null vector 0 and let z € X such that z ¢
L(zy, -+ ,zm). Then we have

(3.3) Dz, oml2) < [lzafzl|? - o).
For m > 2, the equality in (3.3) holds if and only if
(i, zjlz) =0, 1<i<j<m.



1138 Y. J. Cho, M. Matié, and J. Pecarié

Proof. For m = 1, we have I'(z;|z) = ||z1/2||? and (3.3) is trivially
satisfied. So, take m > 2 and first suppose that z;,- - ,z,, are linearly
dependent. Then the left-hand side in (3.3) is equal to zero, while the
right-hand side is strictly positive. Namely, the equality ||z;|z]|? = 0 for
some j is possible only with z; = 0, which is excluded. Thus (3.3) holds
with strict inequality in this case.

Next, suppose that x;,--- ,z,, are linearly independent and define
Y = L(z2, --- ,zm). By Theorem 2, the vector x; can be represented as

ri=u+v, ueyY, (v,ylz)=0
for all y € Y. Applying Lemma 1, we have
(3.4) D(xy, 22, ,Zm|z) = [|v|z||2F(x2,--- y Ton]2).
On the other side, (v,u|z) = 0 implies that
(3.5) lwslzl® = llul2l® + llvofz]|* > {lv]=|*.
Since I'(x2,- -+ ,&m|z) > 0, from (3.4) and (3.5), it follows that
(3.6) D(x1,29,  ,xm|2) < |lo1]2]|°T(za, - -, 2m]2).

Moreover, the equality in (3.6) holds if and only if ||u|z||* = 0, which is
possible only with v = 0. But « = 0 is equivalent with z; = v, that is,
(z1,y|z) = 0 for all y € Y, that is,

(x1,2:]2) =0

for all i = 2,--- ,m. Applying analogous observations to I'(za, ---,
ZTml|2), -+, D(@m—1, Tm|z), we easily get the proposed conclusions. This
completes the proof. O

THEOREM 4. Let z1, - ,x,, € X be linearly independent vectors in
2-inner product space X and

Y =Lz, - ,zm).

Let z € X be such that z ¢ Y. Then, for any v € X, we have

. . _ F(.’II,.’El,“‘ ,.’IZmIZ) 1/2
inf N —ylell = min | — ylell = P sl
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Proof. Let x € X be given. By Theorem 2, x can be uniquely repre-
sented as
z=u+v, ueyY, (v,ylz)=0

for all y € Y. Now, if y € Y is arbitrarily chosen, then we have
z—y=u—-y+v, u—y€eyY, (v,u-—ylz)=0.
Therefore, we have
lz = ylzll? = lu = ylzl* + [[v]2]* > [Jv]2[?

and the equality occurs when y = u. We conclude that

3.7 inf ||z — = mi - = .
(3.7) Jnf, lz = ylz|l gg}ﬂfv ylzl| = [lvlz
On the other hand, by Lemma 1, we have
D(z,z1, - ,&m|2) = |v|2|*T(z1, -, Tm|2).
Also, I'(zy,- -+ ,2m,|2) > 0since x4, - - - , z,, are linearly independent and
z €Y, so that
I(z,21,  ,Zn|2)
llo]2]* = e
D(zy, - ,zm|2)
which, in combination with (3.7), proves our assertion. This completes
the proof. O
COROLLARY 3. Let zy, -+ ,z,, € X be linearly independent vectors

in 2-inner product space X, m > 2, and let 2 € X be such that z ¢
L(xy, -+ ,&y). Then we have

Dl @mle) _ Dea o zulz) _
(3.8) [(zy,--- ,zklz) = Tz, -+ ,zk]2) —
Lk, - aml2) <T(Zhi1,  »Tm|2)
T(zglz) = kb omm

for 1 < k < m. Moreover, the equality

D(@r 1, ,@m|z)  T(xr, -, Tml2)

D(x,_1, - ,x]2)  D(xy,-,z|2)
occurs for some r € {2,--- ,k} if and only if

Tro1=Up +Vp, U € L(zy, -+ ,2k), (vr,zi]2) =0

for all i = r,--- ,m. The equality
D(zk, - ,Zml|2)

[(zk|2)
occurs if and only if (zg,z;|2) =0 foralli=k+1,--- ,m.

= P(:Bk—f-la oo ,iL'm'Z)
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Proof. First take k = 1. Then (3.8) reduces to

Cn o anle) oy

(3.9) e <

which is in fact the inequality (3.6). Also, the equality in this inequality
occurs if and only if (zy,z;]2) = 0 for all ¢ = 2,--- ,m, as we proved
for the inequality (3.6). Further, suppose that 1 < & < m. Replacing
Ty, &y in (3.9) by xk,- -+, Zm, we obtain the last inequality in (3.8)
and obviously the assertion on the equality case is true. Next, for r €
{2,--- ,k}, define the subspaces Y, and Y, as

Yvr = L(CET, T 7~T7n)a Y;«/ = L(.’Er, e ,(IIk).

By Theorem 2, the vector z,_; can be uniquely represented in the fol-
lowing two forms

Tpo1 =Ur +Vpy, Ur €Y, (vp,7]2) =0
foralli=r,--- ,m and
! ! ! ! /
Tpo1 =u, +v., u. €Y. (v,z;]z)=0

for all i =r,--- , k. Applying Theorem 4, we have

D(Zp_1,Tpy 2 |z)
inf lz_ 1 — ylzll?2 = llv.l2l12 = o n S
o lzr—1 — ylz|l [or ]| I(zp, -, zm|2)
and I'( |2)
. T —1 mr v :L‘k A
f o — 2 = ’U/ 2 = r ! ’ ’
Jnf ller—1 = yle)* = Jlvj ] T(z,, -, Zk|2)

But Y, C Y, which implies that inf,cy, ||z,—1 —y|2||* < infyey/ |2, -1 —
y|z||?, that is,

F(l'r_l,.’lfr,"' ,-'L‘le) F(m'r‘—laxra“" 7:1"]612)
L(z,, - ,Zm|2) - D(zp,- - ,zk|2)

or, equivalently,

F(:L'r——lax’l""” ,.’L’le) F(III—,-,"' ,I’m|2)
F(xr—l,xTa"' 7$k‘z) - F(x'ra"' ,xk]Z)

(3.10)
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Moreover, the equality in (3.10) occurs if and only if
(3.11) llorl2l1* = flor]2]f?.

Now, from z,_; = u, + v, = u,. + v}, it follows that

/ ! / !
Up = Up — U+ Vp, Up— U, €Yy, (Vp,ur —u,|z) =0,

which implies

o2 = llur — uplz))? + [for|2]1%.
From the above inequality and (3.11), we get ||lu, — u’.|z||? = 0 which is
possible only with u, — u;. = 0. This means that u, = u/. and v, = v..
In fact (3.11) is equivalent to the requirement

Troy =Ur +Vp, Up =u. € Lz, -, 21), (vr,24)2) =0
for all i = r,--- ,m. This completes the proof. O
COROLLARY 4. Let z1,- - ,z,, € X be arbitrarily chosen vectors

in 2-inner product space X, m > 2, and let z € X be such that z ¢
L(zy, - ,xm). Then we have

F(.’L'l,' oy Ty Th41, 0t ,$m|2)

3.12
(312) <T(@1, 2l (@hg, s Eml2)

for 1 < k < m. Moreover, the equality in (3.12) can occur only in one of
the following three cases:

(i) The vectors x1,--- ,xy are linearly dependent.
(ii) The vectors zyy1,- -+ ,x,, are linearly dependent.
(iii) The vectors 1,--- , &y, are linearly independent and (z;,z;|z) =

Oforall i€{l,---,k}andje{k+1,-- - ,m}.

Proof. Ifxy,--- ,x,, arelinearly dependent, then (3.12) trivially holds
since the left hand side is zero and the right hand side is nonnegative.
Also, the equality in this case occurs in (3.12) if and only if the right
hand side is zero, which is equivalent with the requirement that either the
vectors 1, -+, are linearly dependent, or the vectors z4.1, -,z
are linearly dependent. Further, if the vectors z1,--- ,z,, are linearly
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independent, then we can apply the first and the last inequality from
(3.8) to obtain the inequality

F(.’L’l,"' ,:cm‘z)
<I'(z 3y Tm%),
F(l‘l,"‘ ,l’klZ) - ( hrd l )

which is equivalent to (3.12). Also, the equality occurs in (3.12) if and
only if we have the equalities throughout in (3.8), that is,

C(zk, -y Zm|2)

13  D(2pay, e o
(3 ) F(zklz) ($k+17 » T IZ)
and

F(Ir_l,"' ,.’L'm,|2) F(:ETW"' ,CL‘m|Z)
3.14 =
( ) T(zp—1, - ,xx|2) Iar, -, zi|2)

for all r € {2,--- ,k}. Now, (3.13) is equivalent with

(3.15) (zg,x4]2) =0

foralli =k +1,--- ,m. Next, (3.14) with r = k is equivalent to
(3.16) Tp—1 = Uk + Vi, Uk € L{zk), (vk,zi]2) =0

for alli =k,.-- ,m. It is easy to see that (3.15) and (3.16) together are
equivalent with

(x,-, lez) =0
fori € {k —1,k} and j € {k+1,--- ,m}. Continuing the argument in
this way for r = k —1,--- ,2, then we have the equalities throughout in
(3.8) if and only if

(zi,zj]z) =0

foralli € {1,--- ,k} and j € {k+1,--- ,m}. This completes the proof.C]

4. A generalization of Cauchy-Schwarz inequality

Let (X, (-,-|-)) be 2-inner product space over the field of real numbers
K = R or the field of complex numbers K = C. For given m € N,
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consider two sequences of vectors 1, ,z,, € X and y1, - ,ym € X.
Then, for any given z € X, we can define the matrix A of order m by
(1, ml2)  (z1,92]2) - (21,Ym|2)
(z2,3112)  (z2,92l2) -+ (%2,Yml2)
41) A= , , , o
(xm7y1|z) (CCm,leZ) (CL'maym|Z)
If we define

Y = L(-'L'ly"' sy Tmy Y1, »ym)7
then Y is a finite-dimensional linear subspace of X of dimension dimY =
n. If z is such that z ¢ Y, then we can choose the base {eq,--- ,e,} for
Y such that
(ei,ej]z) = 57;]‘, Z,] & {1, v ,'I’L}.
Using the Parseval’s identity (2.11), it is easy to see that A can be
represented as

(4.2)
(w1,e1]z) - (my,eq]2) (er,11lz) --- (e1,yml2)
A= : : : : : :
(33m,€1|2) (-Tm’enlz) (en’yllz) (envymlz)
If m > n, then obviously the vectors zy,- - - , 2, must be linearly depen-

dent (the same is true for the vectors (y1,-- ,¥,n) which implies that
the rows (columns) of the matrix A are linearly dependent and hence

det A = 0.

LEMMA 2. If m < n, then we have the identity

(43) det A = Z €(j17j2"" ’jm)n(j17j27"' »jm)7

]-Sjl<j2<"'<jmsn

where
(z1,€5,l2) - (z1,€5,]2)
(4.4) E(Grs 2y ey m) = . :
(@m, € lz) - (Tm,e5,]2)
and

(6j15y1lz) (ejlaymlz)
(45) T](jl’j27"' vjm) = : ’ .

(ejm,y1|z) tt (ejm.aymlz)
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Proof. Applying Binet-Cauchy’s theorem, we get (4.3) directly from
(4.2). O

THEOREM 5. Let zi,---,z,, be given vectors in 2-inner product
space X. Set Y = L(xy, -+ ,zx) and take any z € X such that z ¢ Y.
If{e1,--- ,en}, n=dimY > m is the base for Y such that

(e1,€5)2) = by
for alli,j € {1,--- ,n}, then

(4‘6) P(1.17' o ,xm|z) = Z If(jl,]é,‘ o 7jm)|2’

1<j1 <2< <jm<n

where £(j1,j2,+ - , jm) is defined by (4.4).

Proof. Set y; = x; for j = 1,--- ,m. Then, for the matrix A defined
by (4.1), we have

A=G(x1, - ,Zml|2), detA=T(z1, - ,2,|2).

AlSO’ for g(jl)j?"" 1]m) and n(jl»jZa"' ’jm) respectively given by
(4.4) and (4.5), we have

n(jlaj27' o ’jﬂb) - g(jl?j?)' o a]m)

Therefore, (4.3) reduces to (4.6) in this case. d

THEOREM 6. Let {x1,--- ,x,,} and {y1, -+ ,ym} be two sets of lin-
early independent vectors in 2-inner product space X. Set Y = L(x,,
'y Tm, Y1, '+, Ym) and take any z € X such that z ¢ Y. If A is defined
by (4.1), then

(4.7) |det A> <T(x1, -, Zm|2)TW1, -, Yml2).
The equality occurs in (4.7) if and only if {zy,--- ,Z,,} spans the same

subspace as {y1, -+ ,ym} does, that is, if and only if L(xy, + ,Zm) =
Ly, - yym) =Y.
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Proof. Set n = dimY. Obviously n > m under given assumptions.
Take any base {e;, - ,e,} for Y such that

(i, €5]2) = &y

for all 3,5 € {1,---,n}. Then the identity (4.3) is valid and we can
apply Cauchy’s inequality for sequences to obtain the inequality

| det A|2
< Z Ig(j17j27"' 7jm)|2 Z |77(j1,j27"' 7jm)|2'
1<j1 <ja < <m <0 1<i1<j2 < <jm<n

By (4.6), the first sum on the right hand side of the above inequality is
equal to I'(xy, - -,z |2), while the second sum is equal to I'(y1, - - -, Y |2)
since, for the transpose M7 of a square matrix M, we have det M7 =
det M. Thus, the above inequality is equivalent to (4.7). It remains the
question on the equality case in (4.7).

The orthonormal base {e;, - ,e,} for Y can always be chosen so that
the first m vectors are obtained by applying the procedure of getting
orthonormal vectors described in Corollary 1 to the vectors z1,:-- , z,,.
It is easy to see that, in this case, we can express the vectors zy,- - , Z,,
in the form

_ 172
T =7 é,

Yr 1/2
Ty = ( ) [ar,lel + -t 16021 + er]

Yr—1
for r = 2’- s, MM, where
Y =I(z1, -, 2.|2)
for r =1,2,--- ,m. Therefore, for j = 1,.-- ,m, we have

2
(z1,9j12) = " (er, y;12)
and

Yr
Yr—1

1/2
(@ry512) = (=) " lanalen,yila)+ +arni(er1,y512)+(er,yy12)]
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for r = 2,--- ,m. Using this and the elementary properties of determi-
nant, we get
det A =T(xy, - ,Zm|2)"/% det B,

where
(el,yliz) (61,112’2) (ebym|z)
(e2,y1]2) (€2,y2]2) -+~ (62,ym|z)
(emvyllz) (€m7y2'z) (emyymlz)

This means that
|det A|? =T(z1,- - ,2m|2)| det B
Note that actually we have
det B=n(1,2,--- ,m),

where 1(j1, ja,- -+ dm) for 1 < ji < jo < -+ < jm < 1 is given by (4.5).
Now, the equality in (4.7) is equivalent to the requirement that

(48) F(ylv aym|z) = IdetB‘z = I’?(l,?» am)!2-

On the other side, by Theorem 5, we have

(49) F(yly 7ym-|z) = Z |7I(j17j2>“' ajm,)|2-

1< <jo < <jm<n

From the equalities (4.8) and (4.9), it follows that the equality in (4.7)
holds if and only if

(410) n(jlaj2>"' ’]m) =0

for all (1,2, ,Jm) # (1,2,--+ ,m). Further, consider the vectors

(elayllz) Tt (elvymlz) €1
U; (em,y1l2) -+ (€m,Yml2) em (t=m+1,--- n).
(eisyilz) - (€i,Ym]2) ‘ €;

Expanding the above determinant over the last column and using (4.10),
we have
v = 7’(1727 T am)ei
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for i=m+1,--- ,n. On the other side, we have, for all j =1,2,--- ,m
andi=m+1,---,n,
(el7yllz) Tt (elyymlz) (elayjlz)
@l =| o =
(em,y1l2) -+ (em,ymlz) (em,y;l?)
(e, y1]2) -+ (en,ymlz)  (es,y52)

since two columns in this determinant are identical. This implies that

uilz) = (vi,y512) _
(ezvyjl) ,'7( 0

1,2,.-- ,m)

foralli=m+1,--- ,nand j = 1,2,--- ,m. Using this and the fact that
any y € Y is uniquely represented as y = .., (v, €;|2)e;, we see that,
forall j =1,2,--- ,m,

m

y;j = Z(yj,eilz)ei € Liey, - ,em) = L(z1, + , ).

i=1

This means that y;, - , ¥, span the same subspace as the one spanned
by zi,---, Ty, since y1,-- ,Ym are linearly independent. Therefore,
(4.10) is equivalent to the requirement that L(zy, -+ , %) = L(y1, -,
Ym)- This completes the proof. d

COROLLARY 5. Let zy,--- ,x, and y; be given vectors in 2-inner
product space X. Suppose z1,--- ,x, are linearly independent and take
any z € X such that z ¢ L(x1, -+ ,Zn,y;). Then

I(x1 +y1, 22, ,~Tn|z)1/2

4.11)
( S F(l’l,ﬁlfg,‘ o ,$n’2)1/2 + F(yl,Il?Q,‘ °t ,l'n|2)1/2-

The equality occurs in (4.11) if and only if

(4.12) n=Ar1+u, A>0, ué€ L(zg, - ,z,).
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Proof. Using the elementary properties of determinant, we easily have
the following identity

D(zy + y1,22, -+ ,xn|2) =T(x1, 29, -+ ,2,]2) +det A+ det A
+F(y17$2a"' ,l‘n‘Z),

where
(mhyllz) (CCl,CL‘z'Z) (mlamnlz)
| @2nl2) (z2,32l2) oo (22,24]2)
(mnyyllz) (CE,—L,.’L'2|Z) e (.’L'n,.’L‘n]Z)
Applying Theorem 6 to the sets of vectors {z1, zo, -- -, z,} and {y1, x2,
“++, Tn}, we have
|det A| < T'(zy,xa, - ,Zn|2) Y2 (Y, 2, - -+, Tal2) M2,

Therefore, we have

F(l'l +y1,932," : ,.'ITnIZ)

=T(x1, 20, - ,&n|2) +det A+det A+ T(y1,z2, -+ ,Zn|2)
=T(z1,22, - ,Zn|2) + 2Re[det A] + I'(y1, 22, -+ ,Zn|2)
<T(zy,x0,- - ,Zn|2) + 2|det A| + T'(y1, 22, -+, Tn|z)
ST(z1,22, ,2n)2) + 20(21, 22, -+, 2n]2) /2T (Y1, 22, -, Tn]2)'/?

+T(y1, 22, ,Znl2)
= [[(z1, 32, 2n|2)2 + (g1, 32, ,70|2) /2],
which yields (4.11). Obviously we have equality in (4.11) if and only if

Re[det A] = | det A|
(4.13)

= F(.’El, 0 PR a$n|z)1/2r(yl7m2, ce axn‘z)l/2'
The first equality in (4.12) is equivalent with det A > 0, while the second
one holds if and only if yy,z2,--- ,z, are linearly dependent or L(y;,
To, +, Tn) = L(zy, 22, -+, Tp). In the case when y;,z2,--- ,2, are
linearly dependent, we have y; = u € L(z2, -+ ,z,) and det A = 0,
while, in the case when L(y1,z2, - ,x,) = L(z1,22, -+ ,Z,), we have
y1 = Az + u for some A # 0 and some u € L(zg, -+, z,). In this case,

we get det A = AI'(x1, 22, -+ ,n|2) so that the condition det A > 0 is
equivalent with the condition A > 0. This proves that the equality occurs
in (4.11) if and only if (4.12) holds. This completes the proof. O
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5. A generalization of Bessel’s inequality
Let (X, (-,+|-)) be 2-inner product space over the field of real numbers

K = R or the field of complex numbers K = C. In this section, we give
a generalization of Bessel's inequality

(5.1) > Iz eil2)? < llzlz),
: i=1
which holds for any x € X whenever ey, - ,e,,z € X are the vectors
such that
z¢ Lier, - ,en)
and

(ei,ejlz) = (Sij, Z,] € {l, o ,n}.

Also, we know that equality occurs in (5.1) if and only if x = u + vz for

some u € L{ey,- - ,e,) and some scalar y € K.

THEOREM 7. Let X be 2-inner product space and let x1,--+ ,x,,2 €
X be the vectors such that xi,--- ,z, are linearly independent and
z ¢ L(zy,-+- ,xy). For any given vector x € X, define

Ai = (2, 25]2)

fori=1,--- ;n. f A=T(z1, -+ ,x,|2) and A, is equal to the determi-

nant obtained from A by replacing the i*" row of I'(x1,--- ,z,|2) with
(M, ,Ap) fori=1,--- ,n, then we have
(5:2) I>° Aiilz| < Allalz.

i=1

The equality in (5.2) occurs if and only if there is a scalar A € K such
that

1 n
T = K;Aﬂri-)\&
Proof. Note that A > 0 and consider the vector y € X defined as

1« .
y=-A—Zéi:ci (6, €K, i=1,---,n).

=1
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We have .
(y,z|z) = AZ& (x,x;]2) = Z i\

and

(y,ylz) = 2265 (24, 2i|2).

i=1j=1

The requirement that (y,z|z) = (y,y|z) is therefore equivalent to

(5.3) 26)\ AZZ&& (x4, zi|2).

i=1 j=1

Obviously (5.3) will be satisfied if 6y, -+ ,d, are chosen so that

that is,
(5.4) S (@jzile)s; = AN (=1, ,0).
j=1

The matrix of the above system of linear equations has determinant
equal to I'(zy, -+ ,2Zn]2) = A > 0. Therefore, the system (5.4) has
unique solution given as

9;
) (z1,21|2) -+ (zj-1,21]2) AN (jp,2lz) - (Tn,21]2)
=A : ; ; : :
(x1,2nl2) -+ (Tj-1,Talz) Adn (Zjr1,2n]2) -+ (Tn, Tal?)
1

ZA]' (]‘—_1,,71)

We conclude that, for the vector y € X defined as

1 n
=< Ai iy
Ag o
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we have

(y,7|2) = (y,ylz) and (z,y]z) = (y,z|z) = (y,y|2).
Using this, we have
0< ||z —ylz|?
=(r—y,z—yl2)

= llzlzll* = 2y, yl2) + llyl=
I1” = llyl=ll?

I?
= ||z|2

or, equivalently,
1 n
lylzl = < || 3 Aswilz]| < Nl
=1

which is equivalent to (5.2). Moreover, the equality occurs in the above
inequality and hence in (5.2) if and only if £ — y and z are linearly
dependent, that is,

alz—y)+PB2=0

for some o, € K with @ # 0 or § # 0. Evidently we must have
a # 0 or, otherwise, we will have z = 0, which is not true. Therefore,
z =y — (f#/a)z. We conclude that the equality in (5.2) occurs if and
only £ = y + Az for some A € K. This completes the proof. a

REMARK 4. (1) The inequality (5.2) can be regarded as a general-
ization of Cauchy-Schwarz-Bunjakowsky inequality. Namely, for n = 1,
we have

A= (ml,xllz), Al =}\1 =(IL‘,CL'1|Z)

and (5.2) reduces to

(2, z1]2)[V (21, 21|2) < (%1, 21|2)V/ (7, 2]2)
or, equivalently,

l(x7mllz)l2 < (wlywllz)(x’xlz)'
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The equality occurs if and only if
— (:L‘, T llz)
(331 » L1 'Z)
for some A € K. This is just the Cauchy-Schwarz-Bunjakowsky inequal-

ity stated for three vectors x,z1,z € X such that z; # 0 and z ¢ L(z;).
(2) Suppose that z1,--- ,z, satisfy additional condition

T+ Az

(@i, z;5|2) = b
for all 4,7 € {1,--- ,n}. In this case, we have
A =1, A, =)\ = (z,24]2) (i=1,---,n),
so that (5.2) becomes

n
1D (@ z|2)as|z]| < ||zl
i=1
or, equivalently,
n
> @ zil2))? < lel2ll?,
i=1

which is just the Bessel’s inequality (5.1), where e;,-- - , e, are replaced
with 21, -+, zn. The equality holds in this case if and only if

n

x = Z(z,xﬁz)xi + Az

i=1
for some scalar A € K.
COROLLARY 6. Let X be 2-inner product space and let a,b,z € X

be the vectors such that a,b are linearly independent and z ¢ L(a,b).
For any given vector x € X, define

u=(z,a|z), v=(z,b2).
Then we have
(5.5) T'(a,bl2)llz|2]? > [[7a — mblz|*.
The equality in (5.5) occurs if and only if

(a,va — Tb|z)b — (b, Va — Tib|2)a
= A
o I'(a,b|z) Az

for some scalar \ € K.
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Proof. We apply Theorem 7 with n = 2, ; = a and x5 = b. Then we

have
Al=u, Ao =v, A=T(a,blz)

and
Ai= l (b,ZIz) (b,glz) = #b,0le) = vlb,alz) = ~(67a — ptle),
Ay = (a7Z|Z) (a,:lZ) — V(a,a|z) — /.L((L,b|Z) = (a,ﬁa — ﬁb|2«')

Consider the vector
¥ = Ara+ Azb = (a,Ta — ib|2)b — (b,Va — Tib|2)a.
We know, by (5.2), that
91zl < Allzlz]| = T'(a, blz)|lx]z],
or, equivalently,
(9,912) < T(a,bl2)*(z, z|2).
This is a consequence of the equality (y,y|z) = (y, z|z), which holds for

the vector _ -
yoi_ i
A T(a,blz)
Note that the equality (y,y|2z) = (y,z|z) is equivalent to

(@,92) _ .
F(a, b\z) - (y,(CIZ)
Therefore, we have
C(a, bl2)el2] > £ 505

(
= ((a,7a — [ib|2)b — (b, Va — @b|2)a, z|z)
= (a,7a — [ib|2)T — (b, Va — 1ib|2)1

= (Va — @b, Va — 11b|2)

= |[7a — mb|?,
which is just the inequality (5.5). Also, we know, by Theorem 7, that
the equality occurs if and only if

g
I(a,b|2)

This completes the proof. O

+ Az (A€ K).

r=y+Az=
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THEOREM 8. Let X be 2-inner product space over the field K = R
of real numbers. Let a,b,z € X and ey, - ,e, € X be the vectors from
X such that z ¢ L(a,b) and, for all i,j € {1,--- ,m},

(ei,ej]2) = bsj
and
(5.6) (a,e;|2)(b, €i]2) # (a,ei]2)(b, e;]2)

fori # j. Ifp;; € R (3,5 € {1,--- ,m}, i # j) are given real numbers
which satisfy the conditions

(5.7) Pij = Pji

for all i # j, 1,5 € {1,--- ,m} and

P= Z pi; # 0,

1<i<j<m

then, for any two scalars pu,v € R,

e pij(va — pb, e;|z)
2 (a,e;|z)(b, esl2) — (a,eil2) (b, e;]2)

. blZH2 m
P2 “Va’ M <
T C &

i=1

i#j=1

Proof. First note that the condition (5.6) implies that a, b are linearly
independent. Next, for any two scalars u, v € R, consider the vector

- UL pij(’/a — b, 6;1“2)
T = €;
2 2 (a,e;]2)(b, €i]2) — (a, e]2)(b, e;2)

i=1izj=1

Using the properties of 2-inner product (-,-|-) in the real case, we have

pij(a,e;|2)(a, eiz)
Gl =vY Y (@ e 2) s eil?) — (@ e0]2) (b, 12)

i= lz;é =1

B pi;j(b,e;|z)(a,e;|2)
HZ Z a ejlz) b 61' ) (a,el(z)(b,eﬂz)'

i=1i#j=1
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On the other side, using the condition (5.7), we easily see that

SRS pij(a, €;|z)(a, €i2) _
g Z: (a,ej]2)(b,e;|z) — (a,€;]2) (b ej]z) 0

and
- pij (b, €;]2)(a, €i2)
pi; = —P.
;; @ e 12)b,e112) — (@, el 2)byes7) Zm g
Therefore, we have
(Z,a|z) = uP.
Analogously, we have also
(Z,blz) = vP.

Therefore, we can apply Corollary 6 to the vector * = Z/P so that, by
(5.5), we have

a, b|2)||z]z|| z
OB i, b2y S o 2 7 - mbl 2

J22
or, equivalently,
zllm—ul)IZH2 2
_— < zZ|“.
To complete the proof, it is enough to apply Parseval’s identity to the
term ||Z|z||2. This completes the proof. O

COROLLARY 7. Under assumptions of Theorem 8, we have

(2) |Iva(;lZTZIZHZ i

i=1

m

Z (va — pb,e;|z)
2= @e)b.enls) — (@ el e, )

2

for any two scalars pu,v € R.

Proof. Set p;; = 1 for all ¢ # j, 4,5 € {1,--- ,m} and note that
P = Zl<i<j§mpij = (2") Then, applying Theorem 8, we have the
conclusion. O
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