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HADAMARD-TYPE FRACTIONAL CALCULUS

ANATOLY A. KILBAS

ABSTRACT. The paper is devoted to the study of fractional integra-
tion and differentiation on a finite interval [a, b] of the real axis in
the frame of Hadamard setting. The constructions under consider-
ation generalize the modified integration [”(t/x)* f(t)dt/t and the
modified differentiation 6 + u (6§ = D, D = d/dx) with real u, be-
ing taken n times. Conditions are given for such a Hadamard-type
fractional integration operator to be bounded in the space X7 (a,b)
of Lebesgue measurable functions f on R, = (0, o0) such that

/Itf % <00 (1<p<o0),

ess wpugng[ I < (p=),

for ¢ € R = (~00,o¢), in particular in the space L¥(0,00) (1 <
p < o0). The existence almost everywhere is established for the
corresponding Hadamard-type fractional derivative for a function
g(x) such that r*g(x) have & derivatives up to order n — 1 on |a, b]
and 6" ! [z*g(x)] is absolutely continuous on [a, b]. Semigroup and
reciprocal properties for the above operators are proved.

1. Introduction
The purpose of this paper is to develop fractional integration and

differentiation in the Hadamard setting. For naturaln € N = {1,2,---}
and real 1 and a > 0 such an aproach is based on the nth integral of the

form
" _ dty [ dt tn—1 dt
(Tas (&) = 2 / o [T e
(1

AN dt
= 1). / (E) (e3)" SOF @>a)
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and the corresponding derivative
d
(Diear9)(@) = (6 + W) (@) = 2f (@) + pf (), 6 =2,

D;TI,L,a+g = D/_lt,a-l-(DZ;zi—g) (n = 27 37 e ) (CL’ > a)‘

(1.2)

The fractional versions of the integral (1.1) and the derivative (1.2)
are given by

(13) (Do) = 1 [ (3> (o) % @5 0, 2> a)

T t

and

o - n—a d
(D21 u9)@) = a8 (jig) (2), 6 =2

(>0, n=[a]+1, ueR),

(1.4)

respectively, [a] being integral part of a. When u = 0, (1.3) and (1.4)
take the forms
1 * A du
(64 — — — .
15 GEN@ =g [ (o) i @>0 250
and
(87 n n—o d
(1.6) (Dgy)(z)=4 (JaJﬁ g) (z), 6 = x% (@ >0; n=[a] +1)
The integral (1.5) was introduced by Hadamard [5] in the case a = 0 and
therefore 72, f and Dy, f are often referred to as Hadamard fractional
integral and derivative of order « [6, Section 18.3 and Section 23.1, notes
to Section 18.3]. Therefore we may call the more general constructions
in (1.3) and (1.4) Hadamard-type fractional integral and derivative of
order a.

It is well developed an approach to fractional calculus by Riemann
and Liouville based on the generalization of usual integration [ f(t)dt
and differentiation D = d/dz, see for example [6, Chapters 2 and 3].
Hadamard fractional calculus approach is studied less. Some facts for
the Hadamard calculus operators (1.5) and (1.6) were presented in [6,
Section 18.3]. The Mellin approach was suggested in [1] to study the
properties of the operators Jg, , and Df, ., defined on the the half-axis
R, = (0,00). Some properties of the operator Jo4,, and three of its
modifications were invetsigated in [1)-[3].

The aim of this paper is to study the properties of the Hadamard-type

fractional operators (1.3) and (1.4) on a finite interval [a,b] of the real
line R = (—o0,00) for a > 0. The paper is organized as follows. First
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in Section 2 we give conditions for the operator J;% ,f to be bounded
in the space XZ(a,b) (c € R, 1 < p < o0) of those complex-valued
Lebesgue measurable functions f on [a, b] for which || f||x» < oo, where

b 1/p
00 e = ([ EorT) T 0<p<s cen
and

(1.8) [lfllxge = ess sup,;<p[tlf ()] (c € R).

In particular, when ¢ = 1/p (1 < p < oc), the space XZ(a,b) coincides
with the classical LP(a,b)-space: LP(a,b) = Xf/p(a, b) with

b 1/p
19) i1 = ([ 1sra) 0 <p<oo)
“f”oo = €88 Supagtgblf(tﬂ.

Next in Section 3 we prove that the Hadamard-type fractional deriv-
ative Dg, g exists almost everywhere for a function g(z) € ACY, [a,b]
such that z#g(x) have § = D (D = d/dx) derivatives up to order n —1
on [a,b] and 6" ![z#g(x)] is absolutely continuous on [a, b]:

ACyla,b] = {h: [a,b] - C: " Lzth(z)] € AC]a,b],
(1.10) R & x
n e R, = x—CEL‘—}

Here AC[a, b] is the set of absolutely continuous functions on [a, b] which
coincide with the space of primitives of Lebesgue measurable functions:

(1.11) h(z) € AC[a,b] & h(z) =c+ /z Y(t)dt, ¥(t) € L(a,b),

see, for example, [6, (1.4)].

In conclusion in Section 4 we establish semigroup and reciprocal prop-
erties for the operators Jjﬁﬁu and D o
We note that the corresponding results for the Hadamard fractional

calculus operators (1.5) and (1.6) are also presented in Sections 2-4.

2. Hadamard-type fractional integration in the space X%(a,b)

In this section we show that the Hadamard-type fractional integration

operator Jg%. , is defined on XP%(a,b) for u > c. To formulate the result
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we need the incomplete gamma-function ¥{(v, z) defined for v > 0 and
x> 0 by [4, 6.9(2)]:

T
(2.1) v(v, ) =/ t~letdt.
0
THEOREM 2.1. Let a > 0,1 < p < oc, 0<a<b<ocandlet,u€R

and ¢ € R be such that p > c. Then the operator J. , is bounded in
X?%(a,b) and

(2.2) 1724 wfllxe < Kl fllxes
where
N 1 b\“
(2.3) K = ) <log E)
for u = ¢, while
(2.4) K= —!——(u —c) %y [a, (1 —c)log (Qﬂ
INa) a
for u > c.

Proof. First consider the case 1 < p < oco. Since f(t) € XF(a,b),
then t°~1/Pf(t) e Ly(a,b) and we can apply the generalized Minkowsky
inequality (see, for example, [6, (1.33)]. In accordance with (1.3) and

(1.7) we have
ﬁ/j <§>“(log£> 1t d;r)l/p

b
192 Fllce = ( / o
) p

Il

aac 1py= H(log u)*~ lf( )

b/ ;Lll a—1 b
A s ([+711 C) x)

b/a b/u
= [ wettogue ([ e sor
1

IA

and hence

172 » < M| fllxe,

where

b/a
M= / u** logu)* du.
1
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Direct calculation show that M coincides with K given in (2.3) and
(2.4), when g = c¢ and p > c, respectively. Thus (2.2) is proved for
1<p<oo.

Let now p = oo. By (1.3) and (1.8) we have
B p—c -
@ < [ (5) (oed) T s
and thus
(2.5) |2°(Tag uF)(@)] < K@) || fllxee

where ,
K(z)= / u™# (log u)“_liqf.
1 U

When p = ¢, then for any a <2 <b

26)  K(z)= Talil_) (1og g)a < —I:(a%ﬁ (log 2)a

If 4 > ¢, then making the change of variable (u — cju = y and taking
(2.1) into account we find
1 —a T
K(@) = gy =)™ [on (u = 01og (T)].

v(v, ) is increasing function and thus

1 b
) < ey — ) _ b
(2.7) K(@) = 5™ o)~y [a, (b —c)log (a)]
for any a < z < b. It follows from (2.5)-(2.7) that for any a <z <b

(2.8) |2°(Ta% u) (@) < K| fllxee

where K is given by (2.3) and (2.4) when p = ¢ and p > c, respectively.
Hence, in accordance with (1.8), from (2.8) we obtain the result in (2.2)
for p = oc. This completes the proof of theorem. O

Putting ¢ = 1/p in Theorem 2.1 and taking (1.9) into account, we
deduce the boundedness of the operator Jg, , in the space L? (a,b).

COROLLARY 2.2. Let a > 0,1 < p<o0,0< a<b< oo and let
p € R be such taht u > 1/p. Then the operator J;} ,, is bounded in
L?(a,b) and

(2.9) 1Ta% ufllp < Kallfllps
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where K1 is given by (2.3) for 4 = 1/p, while

1 1\ ¢ 1 b
2.10 Ki=——p—~- uw—=11 -
S C1GH RN CHINE)
for p > 1/p.

Setting 1 = 0 in Theorem 2.1 we obtain the corresponding statement
for the Hadamard fractional operator J2 in (1.5).

THEOREM 2.3. Let a > 0, 1 <p<oo,0<a<b<ooandlet c<0.
Then the operator J2, is bounded in XZ(a,b) and

(2.11) | Tav fllxr < Kallfll xe,
where
1 b\ ¢

(2.12) Ky = CFS) (log a)
for ¢ = 0, while
(2.13) Ky = —1—(~c)“a'y [a, —clog (—IZ)]

I'(a) a
for ¢ < 0.

REMARK 2.4. It follows from [1, Theorem 4(a)] that if p > ¢, then
the Hadamard-type fractional operator Jg%,, s bounded in X?(R,4) and

1T f lxe < K3l fllxe-

Such a result formally follow from (2.2) and (2.4) if we put a = 0, b = 0o
and take into account the relation

(2.14) v(v,00) = I'(v).

REMARK 2.5. It follows from Corollary 2.2 that the operator g 1S
bounded in L?(a,b) for u > 1/p. Similar result can not be obtained from
Theorem 2.3 for the Hadamard fractional operator %, . This fact leads
to conjecture that the operator J% is probably bounded from LP(a,b)
into another space.

REMARK 2.6. The results in Theorem 2.1 and Theorem 2.3 for
Hadamard-type and Hadamard fractional integration operators are ana-
logues of those for the classsical Riemann-Liouville fractional integrals
(see [6, Theorem 2.6]). We only note that the weighted space X¥(a, b)
is suitable for the former, while the space Ly(a,b) for the latter.
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3. Hadamard-type fractional differentiation in the space
ACE, [a, b]

In this section we give sufficient conditions for the existence of the
Hadamard-type fractional derivative Dg, ,g in (1.4). Since the result
will be state in terms of the space ACY [a,b] defined in (1.10), we first
characterize this space.

THEOREM 3.1. The space ACY, #[a, b] consists of those and only those
functions g(z), which are represented in the form

T e n—1 z
(3.1) glxg)=27*# {G—:l—l)—'/a (log %) 1go(t)dt + kz;ock (log E)k} ,

where p(t) € L'(a,b) andcy (k = 0,1,--- ,n—1) are arbitrary constants.

Proof. First prove necessity. Let g(z) € ACY, [a,b], where § = 2D
(D = d/dz). Then by (1.10) 6" ![z*g(z)] € AC][a,b] and hence by
(1.11)

(3.2) m*mwmn=/“wna+%q,

where ¢(t) € L'(a,b) and c,_; is an arbitrary constant. Rewrite (3.2)
in the form

d n—2[..1 _ 1 z Cpn—1
e = 5 [ et 2

Changing z to t and ¢ to v and integration both sides of this relation we
have

e Tz x
"2 xtg(x)) = / log ?go(t)dt + cp—2 + cp-1log P
a

where ¢,_9 and c¢,—1 are arbitrary constants. Repeating this procedure
m (1 <m < n—1) times we obtain

Mzt g(x)] = /az (log E)m_l %dt

t (m —1)!
(33) Cn—1+k—m T\k
+ 0 (loe )
k=0
where ¢p -1, -+, cn—1 are arbitrary constants. Now (3.3) with m =n

yields (3.1), and necessity is proved.
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Let now g(z) is represented by (3.1), or

x ryn—1 SO() k
i - el
xHg(x) /a (logt) =) pdt + E Ck (log ) .
Taking é-derivative m (1 < m < n — 1) times, we have

5[zt g(x)] = /a ’ (log %)"_m—l %dt

+§(k'c’c)|(l )k m.

k=m

From here for m = n — 1 we obtain (3.2) (with ¢ = (n — 1)!¢,—1) and
hence, in accordance with (1.10) and (1.11), g(z) € ACY [a,b]. This
completes the proof of theorem. O

Note that it follows from our proof that ¢(t) and ¢ are given by

61 e =gy =% k=01, n-1),

where

(35)  gk(z) =6*ztg(z)] (k=0,1,-- ,n—1), go(z) = 2¥g(z).

Hence (3.1) can be rewritten in the form

09) oo == [ (s )" B 55 00 g 2],

Now we ready to prove the result giving sufficient conditions for the
existence of the Hadamard-type fractional derivative (1.4).

THEOREM 3.2. Let a >0, n = [a]+1, p € R and g(z) € ACF [a,b].
Then the Hadamard-type fractional derivative Dy, g exists almost ev-
erywhere on [a,b] and may be represented in the form

(D% ,0)(x) = 27 [ﬁl—a) [ (oe?) ™ aar

n —

+zr ale) (%))

where gi(a) (k=0,1,--+ ,n — 1) are given by (3.5).

(3.7)
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Proof. Since g(x) € ACY [a.b], we have representation (3.6). Substi-
tuting this relation into (1.4) we have

t — 1 -
(3.8) x [/a (10g i) ?2—1(1))1‘1“

n-1 k—a
gx(a) t dt
* k! <log a) } t’

k=0

Interchanging the order of integration and applying the Dirichlet formula
(see, for example, (6, (1.33)]) we have

z zyn—e-ldt [* ",
/a (log ?) T/a <log a) Gn—1(w)du
T x n—1
I VT (g 1) 2
= /a gn_l(u)du/u (log t) (log u) s

The inner integral is evaluated by the change of variable y =
log(t/u)/log(x/u) and using the formulas [4, 1.5(1) and 1.5(5)] for the
beta function:

[ (el - B e

and hence
z n—a-1dt [t t\"!
/ (log E) — (log —> Gn—1 (w)du
a t Ja '
['(n — a)l'(n) 2n a-1
e 1
o [ (oe D)
Substituting this relation into (3.8) and taking d"-differentiation, we
obtain (3.7). Thus theorem is proved. O

COROLLARY 3.3. If 0 < a < 1, p € R and g(z) € ACg;H[a,b], then
g exists almost everywhere on [a,b] and

D)) = i | [ (o2 ) o S
+ Jim [eg(o)] (loe ;) ]

{87
Da+ St

(3.9)
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When p = 0, from Theorem 3.2 we deduce sufficient conditions for
the existence of the Hadamard fractional derivative (1.6).

THEOREM 3.4. Let a > 0, n = [a] + 1 and g(x) € AC%la,b]. Then
the Hadamard fractional derivative D¢ +g exists almost everywhere on
[a,b] and may be represented in the form

P20 = gy [ (02 3)" a0

(3.10) N
(6%g)(a) T\ k-
+I§)F(k—a+1) (log)

COROLLARY 3.5. If0 < a < 1 and g(z) € ACJO[a b], then D¢ g
exists almost everywhere on |[a, b] and

o)) = mmas [ (l85) "0

+ f‘(%—(——g)- (log )

(3.11)

REMARK 3.6. The results in Theorem 3.2 and Theorem 3.4 for
Hadamard-type and Hadamard fractional differentiation operators are
analogues of those for the classsical Riemann-Liouville fractional deriva-
tives (see [6, Theorem 2.2]). We only note that the weighted space
ACY. a,b] is suitable for the former, while the space AC™[a,b] for the
latter.

4. Semigroup and reciprocal properties of Hadamard-type
fractional calculus operators

First we prove the semigroup property for the Hadamard-type frac-

tional integration operator J2, L in (1.3).

THEOREM 4.1. Let a >0, 3> 0,1 <p<00,0< a<b< oo and
let 4 € R and c € R be such that u > c. Then for f € X2(a,b) the
semigroup property holds

(41) t;x+,/.t a+, ,uf aoﬁ:ff
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Proof. First we prove (4.1) for "sufficiently good” functions f. Ap-
plying Fubini’s theorem we find

( a+p.\7 f)( )
i [ ) o)
(4_2) U MU u\ 8-
crin [ (9 ) 08

= -F—(%;(F)/Itu“lf(t)dt/tm (log )a 1(log )B ld:.

a

The inner integral is evaluated by the change of variable 7 = log (u/t)/
log(x/t):

o)™ o)™ 5 = () G

Substituting this relation into (4.2) and taking (1.3) into account we

have
eIl ® = 55 | )
= (T30 f) @),
and thus (4.1) is proved for “sufficiently good” functions f
If 4 > ¢, then by Theorem 2.1 the operators Jg ,,, Ja+ . and JO‘H;

are bounded in X7 (a, b), hence the relation (4.1) is true for f € X%(a, b)
This completes the proof of theorem. O

>a+ﬁ—1 du
(7

COROLLARY 4.2. Let >0, 3>0,1<p<o0,0<a<b< oo and
let u € R be such that u < 1/p. Then for f € LP(a,b) the semigroup
property (4.1) holds.

When m = 0, from Theorem 4.1 and Theorem 2.3 we obtain the

semigroup property for the Hadamard fractional integration operators
(L.5).

THEOREM 4.3. Let a >0, 3>0,1 <p<o0,0<a<b< o and
¢ < 0. Then for f € X?(a,b) the semigroup property holds

(4.3) 2 Tof =T f.
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Next we consider the composition between the operators of Hadamard-
type fractional differentiation (1.4) and fractional integration (1.3).

THEOREM 4.4. Let a > 8> 0,1 <p<00,0<a < b< oo and let
p € R and ¢ € R be such that u > c. Then for f € X%(a,b) there holds

(44) Df—i— ,u + ,uf a+,pf
In particular, if 3 = m € N, then

(4'5) DtT+ N aa+,uf Ja+ W

Proof. Let m —1 < 8 <m (m € N). If § =m, then by (1.4)
m AN
(4.6 O @) = (21 ) ylo)
and hence

(Dat a+uf)($)—$_“( di)m_lxd—i—f%.ﬁ/;# (logg)a_lf(u)%u.

Applying the formula of differentaition under the integral sign and using
the relation for the gamma-function [4, 1.2(1)] and (1.3) we obtain

(D;’J,Tfl— M c?—hp.f)(x)
_ d\™! 2 T 0 ryo—1 du
= (%) wa /s (e ) s

_ d\™! 1 r 0 Tya—2 du
=z (%) =1 / Wy (g s) ST
d m—1
=z H (xa) zt a+,u )(@).

Repeating this procedure k£ (1 < k < m) times we have

m—k
O Tieue) =7 (o50) TN

and (4.5) follows for k = m.
If m -1 < B < m, then (4.4) follows from (4.1) and (4.5):

m+a 3 B
a+;t +uf Da+u~7a+u +uf Da+u a+,u f ,,uf-

Thus theorem is proved. O
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COROLLARY 4.5. Let a > 3>0,1<p<o00,0<a<b< oo and
let u € R be such that u > 1/p. Then for f € LP(a,b) the relation (4.4)
holds. In particular, (4.5) is valid for 3 =m € N.

THEOREM 4.6. Let a > 3 >0,1<p <o00,0<a < b < oo and
¢ <0. Then for f € X¥(a,b) the relation holds

(47) DI f = TXT
In particular, if 3 = m € N, then
(4.8) D Tas f = Tox ™

Theorem 4.4 is also true for a = 3 which means that the Hadamard-
type fractional differentiation (1.6) and integration (1.5) are reciprocal
operations if the former is applied first. The result below is proved
similarly to the proof of Theorem 4.4.

THEOREM 4.7. Let a > 0,1 <p<o0,0<a<b<ooandlet y € R
and c € R be such that u > c. Then for f € X?(a,b) there holds

(4-9) Dg+,u aa+,pf = f.
In particular, if p > 1/p, then (4.10) is valid for f € LP(a,b).

THEOREM 4.8. Let a > 0,1 <p<o00,0<a<b< oo and let ¢ <0.
Then for f € X?(a,b) there holds

(4.10) Doy Tawf =T

REMARK 4.9. It follows from [2, Theorem 1(a)] that if & > 0, 8 > 0,
1 <p<ooandp>c, then for f € XP(R,) the semigroup property

(4.11) \751+,u'~70ﬁ+,uf = ~70a++,5f
holds. Such a result follows from (4.1) if we put ¢ = 0 and b = o©

and take into account that the operators Jg} ,. jog-,u and Joof:f are
bounded in X?(R4) when u > c.

REMARK 4.10. The results presented in Theorems 4.7 and 4.8 show
that the Hadamard-type and Hadamard fractional differentiation (1.4)
and (1.6) and integration (1.3) and (1.5) are reciprocal operations if
the formers are applied first. It is the problem when the latters can
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be

fra

applied first. Such a problem is solved for the Riemann-Liouville
ctional calculus operators (see [6, Theorem 2.4]).
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