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WELL-POSEDNESS FOR THE BENJAMIN EQUATIONS

HipEo KozoNo, TAKAYOSHI OGAWA, AND HIROOKI TANISAKA

ABSTRACT. We consider the time local well-posedness of the Ben-
jamin equation. Like the result due to Kenig-Ponce-Vega [10], [12],
we show that the initial value problem is time locally well posed in
the Sobolev space H*(R) for s > —3/4.

1. Introduction

In this paper, we consider the following initial value problem.
{ Ou — Bu — VH02u + 9,(u?) =0 z,t € R,
u(x,0) = uo(z),
where 0 < v < 1. ‘H, denotes the Hilbert transform defined by

Hof(x / Sy N (i - sgn(€)(FLN)(E)

(1.1)

and F,, ]—'€ denote Fourier and inverse Fourier transform respect the
variable z and £.

Problem (1.1) was introduced by Benjamin [4] and describes the in-
termediate wave for the stratified fluid under the condition when the
capillarity on the surface is not negligible.

The purpose of this paper is to consider the initial value problem in
a weak function space, namely the Sobolev space H*(R) with negative
index s and establish the well-posedness to the problem (1.1).

Related to the problem (1.1), the Cauchy problem for the Korteweg-
de Vries equations:

O — v+ 0, (1) =0 z,teR,
v(z,0) = up(x)
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(1.2)



1206 Hideo Kozono, Takayoshi Ogawa, and Hirooki Tanisaka

and the Benjamin-One equations:

{ Bv — vHz0%v 4+ 8,(1?) =0 z,t € R,

(13) o(2,0) = uo(x)

are known and there are many research for them.

Comparing with those problems, our problem (1.1) has a common
structures: the linear term of (1.1} consists of the linear terms appearing
in (1.2) and (1.3) and has the same nonlinear term. Now for the well-
posedness for the KdV equation, the recent works by Bourgain [4] and
Kenig-Ponce-Vega [11] show that the well-posedness for those dispersive
equation hold for the Sobolev spaces with the negative exponent.

Bourgain [4] obtained the global well-posedness for (1.2) in L?(R)
and Kenig-Ponce-Vega [11], [12], [13] established the well-posedness in
H?, with s > —3/4 According to their estimate, the bilinear estimate
for the KdV equation is valid only for s > —3/4 and there is a counter
example when s < —3/4 (see [12] and [16]).

Concerning to the initial value problem for the Benjamin-Ono, Iorio
Jr. [8] showed the H*(R) global well-posedness for s > 3/2 and later
on, Ponce [17] improves his result to H*?(R). For the Benjamin-Ono
case, the bilinear argument does not work well. In fact, it is shown by
Mlinet-Saut-Tzvetkov [15] that a similar bilinear estimate in the Fourier
restriction space does not hold.

Another similar result was obtained by Takaoka [18] for the Hirota
equation of KdV-nonlinear Schrodinger mixed type dispersive equations.
It is also known that there exists a solution for the Benjamin equation
(1.1) (see Angulo [2]).

Since the solution to the problem (1.1) has the following conservation
laws

(14 L) =% / 2,

—oC

o0
(15)  Dp(w) = / (3|a,u(t)|2 O HBu(e) - 1u3(t)> dz,
—oo \2 2 3
it is possible to show the global well-posedness for (1.1) when the data
is belonging to H® for s > 0.

This global well-posedness result in L?(R) was obtained by Linares
[14] by using the analogous argument to [6] and [11], and showed the
L?- conservation law.

Here we consider the well-posedness for (1.1) in H?®, where —3/4 <
s < 0. Moreover since the existence time T can be taken independent
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of the parameter ¥ > 0, we can show that as the limiting procedure of
v — 0 the solution of Benjamin equation converges to the solution of
the KdV equation with the corresponding data ug.

In the following sections, we define the Fourier restriction norm and
prepare some useful lemmas in Section 2. In Section 3, we recall the
linear estimate and in Section 4 we give the main bilinear estimates.
Finally we give the proof of the well-posedness in the final section. We
use the following notations. Let () = (14 |-|*)¥/2 and (D,)* = (1 —
02)%/% = .7-'{1(5)5.7-}, H3(R) = (D;)"*L*(R) : Sobolev spaces with the
norm || - ||gs = |[{Dz)® - |lr2- x(-) denotes a characteristic function of
interval [0,1]. f ~ g means that there exists constants Cy, C; such that
Cof < g < Cif holds. (-, )y is the inner product for the Hilbert space
H. Various constants are simply denoted by C.

2. Results

We first define the space where the solution is constructed.

DEFINITION 1.1. Let the Hilbert space X3 be the space of all func-
tion w with the norm || - || ,.s.». Namely, w € X5bif

S\ 1/2
26)  lollge = ([ i~ e (©¥1ate, ) Pacar
< oo,

where ¢, stands for

D (§) = VIE|E — € (especially $(£) = $1(€)),

and
1 :
o, )= — // e~ HTEHT (2, t)ddt.
2r R2
Our well-posedness result for the problem (1.1) is the following,.

THEOREM 2.1. Let v € R. For any s € (—3/4,0] and ug € H*(R)
there exists b € (1/2,1) and T = T(||ug|lgs) > 0 with lim, 0T (a) = oo
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such that there exists a unique solution u of (1.1) on [-T,T] with the
following properties;

u € C([-T, T, H*(R)) N X:?,

2.7
27 9y (u?) € X341,

Moreover for any T € (0,T), there exists R = R(T') > 0 such
that the mapping {ug € H*(R) : |lup — @o|lus < R} 2 G — u €
C([-T',T'], H*(R)) N X5 is Lipschitz continuous.

REMARK. 1. Linares [14] showed that when s = 0, i.e., when ug € L?
the global well-posedness is valid for T' = oo. For the KdV equation
(1.2), Kenig-Ponce-Vega [11] showed the similar result.

2. The local existence time T = T'(||ug||gr+) can be taken uniformly
for the parameter v € (0,1). In this sense, our theorem covers the
previous result on the KdV equation (1.2) by Kenig-Ponce-Vega [12].

According to the above observation, we can prove the solution of
Benjamin equation u = u,, converges to the solution of the KdV equation
v.

THEOREM 2.2. For any s € (=3/4,0] and uo € H*(R) there exists
be (1/2,1) and T = T(JJuoljas) > 0 (T'(a) — oo (@ — 0)) such that
for t € [T, T], the unique solution of (1.1) u, obtained in Theorem 2.1
converges to v € Xg’b and v solves the initial value problem for the KdV
equation;

(2.8)

v —0v+0,(v*)=0, zeR, te[-T.T],
v(0,z) = up(z), = €R.

3. Linear estimates

In this section, we consider the linear version of the equation (1.1)

(3.1)

Ov — V'Hxagv - 821) =0 f,z e R,
v(z,0) = vp(z).
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According to the well known Stone theorem, there is a unitary group
{W,(t)}*° on L? such that the solution to (3.1) can be obtained by

v(z,t) = Wy (t)vo(z) = St * vo(z),
S(z) = \/_32_? /:: el itvIEE~E%) ge
Introducing (D,)®, (D;)® defined by
(De)*h = FEHE (Feh)(€), (Dibg = FH )b (Fg)(©),
we then see
(3.3) 11l xs = (D) (D2) Wi (=) f | 212

Now let ¢(t) be v € Cg°(R), v =1 (t € [-1/2,1/2]), supp ¥ C
(—1,1) and we let 0 < 6 < 1.
We use the following Sobolev inequality.

(3.2)

LEMMA 3.1 (Sobolev-Morrey). For f € H*(R) with b > 1/2, we have
(3.4) 1flle~® < CNfllavm)
and f € C*~1/2(R).

Here we summarize some linear estimates that is used for proof.

ProposITION 3.2 ([12]). (1) For1/2<b< 1
(3.5) (67 )l 0 < O o] .
(2) For 0 < b<1/2,
(36) (0 t)wllyst < Cllwllyse forall heX5® seR.
(3) For0<a<a<1/2,6€(0,1),seR
(3.7) lo(6 t)w]

Xs.—ﬁ S C(Sa—a”wnx;j.fa

ProOPOSITION 3.3 ([6], [10]). For 1/2 < b < 1, we have
(38) I OW, (B)uol 0 < CEE=P2 g s
for all ug € H®, s € R.
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For 1/2 < b < 1, we have

/ ot < C(5(1—2b)/2“wHX5 -

v

-1 ! — "ot
39 et [ wte- )
See for the proof, [6], [12], [7], and [3].

4. Nonlinear estimates
PROPOSITION 4.1. For s € (—3/4,0], there exists b € (1/2,1) such

that we have

(41) 118w yso-r < Cllwll}

.5 foranywe€ Xf,’b.
Xy

Let s € (—3/4,0]. For w € X5, we set
F&T) = (1= 9 () (E)°(E, 7).
Then by the definition of X5*, ||fllzzz2 = lwll ;. While noting 82 (w?)
(€,7) = CE(@ * &)(€, 7),
102(w?)| o
= | — SO HE MBIz
= Oll(r = ¢ 1O e * D)l 212

§
(T = ¢, (§)1 1)

F(&L,TOEN FE — &1, 7 — ) (€ — )bl
/IR2 (11 — (1)) (T =11 — P (E—&))° dé1dm

= C

LL2

Hence Proposition 4.1 can be established once the following estimate is
obtained.

PROPOSITION 4.2. For s € (—3/4,1/2), there exists b € (1/2,1) such
that for b—b' <min(|s| —1/2,1/4—|s|/3) with ¥’ € (1/2,b] the following
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estimate holds
§
“ (T — ¢ ()10 (E)lel

(4.2) €1,T1) §1 sl f(f &, 7 — )€ — &)l
//IR2 — ¢u(&1) (T —11— du(€ =&)Y drdn L2

< Olfis
If s = 0, then the same conclusion holds for b € (1/2,3/4),b" € (1/2,1b].

Proposition 4.1 is an immediate consequence for ¥’ = b in Proposition
4.2 under s = 0,s € (—1/2,—3/4). The case for s € (—1/2,0) is similarly
obtained.

We first prepare the following estimates.

LEMMA 4.3. For p,q > 0 and r = min(p,q) with p+q > 1+ r, there
exists C > 0 such that

(4.3) /_oo (z —a(z — by < (a—b)""

For r € (1/2,1], there exists C > 0 such that

o° dz C
O v e

dzx (1 + b)2(r=1/2)
(49 /mgb ()20-7)\/la — 2] =C @7z

In order to prove Proposition 4.2, it suffices to show the following
three lemmas. The first one states as follows.

LEMMA 4.4. For any b € (1/2,3/4],b € (1/2,b], we have some C =
C(b,b") > 0 such that

_
h= =g @

. ik /
o (//R (1 — ¢ (€)Y <i fﬁl ~ (€~ 61)>""”)1 2
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Proof. For the simplicity, we give the proof for v = 1. The other case
is quite similar. Let ¢(§) = ¢1(£). We divide the integral region R? into
the four cases:

(1) {(617£); 5 > 61’ §1 > 0}» (11) {(51,§)§ 5 > Ela 51 < 0}7
(i) {(&,8); €< &, & >0}, (iv) {(&,8); €<&, & <0}

THE CASE (i). It follows by the condition on £ and &, ¢(&;) = &2 — €3
and ¢(€ — £&1) = (£ — &1)? — (€ — &1)°. By (4.6) of Lemma 4.3,

o0 dT1
/——oo (11— @& ) (1 — 11 — $(€ — 1))

1
= C<7' — @€ —&1) — p(E))®

(a) Case 0 < ¢ <1 Since0 <& <£<1,

Clel ! dé M2
(T — B (/0 (T — 6 — &) — ¢(sl>2b’> =¢

(b) Case £ > 1. By change of variable such as
p=r-g€—&) - o) =7—{& -+ -2a((E - &)}

we have

_ ¢34 9e2
dp = (3§ —2)(26 — §)d&, & = % {5 + \/4“ 53;—_22 4T}

and

(36 — 2)(26, — €)] = |36 — 2|2 /|47 + €3 — 262 — 4.

Hence

/°° dé1
oo (T= (& —&1) — P&

: C/—oc 3¢ — 20172 () /] + & — 222 — a
1 ° du
C
< €[/ /—oo ()2 /|47 + € —2€2 — 4y
(using (44) )

< C
= e+ €8 —agh) 1t
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Therefore we have

o< CH ( ! )1/2
LT = o) e P + g8 - 217
CleP
(7 = (€le — €)1 P(dr + €3 — 263)1/4
= 01(577—)'

For b < 3/4, 61(&,7) is bounded in R¢ x R,.

;FHE CA33E (ii).  Note that ¢(&1) = —£7 — €3, ¢(€ — &) = (€ - &)% —
§—¢&1)°.

By changing the variable from &; to u such as

nET €= &) - 0(6) =7 — (€ - € - 266 + 366 (€ - &)},

we have

dp = £(2 — 36 4 6£1)d&;,

— 3¢3 —
£1=-é—{(3£—2)i\/12“ % = 127},

|6(2 — 3¢ + 66)| = |€]"/2/]127 + 3€3 — 46 — 12y].

Hence

/°° dé:
oo (T = (€ — &1) — B(62))%
oo d,u
(4.7) < C/_oo |€11/2 ()2 \ /1127 + 3€3 — 4€ — 12p]
C
= e (12r + 363 — 272

Therefore,

L o< ol ( 1 )1/2
LT T = (€)1 \[€[ 2 (12T + 368 — 46)172

|34

S etz + 38 —mi
= 02(5’7—) SC,

uniformly on R¢ x R, for b < 3/4.
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The case (iii) follows from a similar way of (ii). The case (iv) also follows
similarly to (i). This proves the Lemma. O

Next we give the crucial part of the estimate. We divide the integral
region for (£1,71) into the three cases.
Let A, B and B* defined as

A=A )
={e,m) eR? |l 21l -al 21,

(4.8) |7 — 71— ¢(€ — &)| < |11 — B(&1)]
<Ir - 9@},
B =B(&,m)
o ={(§1,7'1)€R2 € —&| >1,1&] > 1,
(4.9) i~ 6(O)] < I — $(€1)],
lr—m— (€ - &) < | — ¢(§1)|},
B* =B*(§,7)
={ener|g-alz1lal>1,
(4.10)

[T — @O < |1 — (&)l
[ — 1 - 3(€ — )l < I — @&}

LEMMA 4.5. If s € (=3/4, ~1/2), b€ (1/2, 3/4 +s/3], b’ € (1/2, b],
then for some C > (),

(4.11)
€|
(1 — ¢, ()12l

/ /- 1(6 — &) i)
= o (@ (-1 — (€ - ELNE

IQE
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where

A=A, T)
={@mer a2 1k-al21,
|7 — 71— (& = &) < |11 — ¢(&1)]
<Ir-¢©l}.

Proof. Similarly before we only consider the case v = 1. Since |7 —
P(€ — &) — ¢(&1)] < 2|7 — (€)| over A, by using (4.6),

/ d7'1
(1 = S(E)P' (T — 11 — P(§ — £1))?

|r—@(E—=E1)—d(&1)]
X( 28] <1)

C
I ey 3y s 3
Thus
las &) !
// (r1 — (T—11 — ¢(§—§1)>2b/dﬁd£1
|§1§ &)l
(4.12) C/ (r— o0&~ 51 ¢(€1)>2b/

(e
= b.

Then similarly before, we divide the region A into four cases

(1) {(é.laé)a é > &17 El > 0}7 (11) {(glaf); f 2> 517 51 < O}a
(lll) {(€1a§)7 £ < 513 61 2 0}7 (IV) {(glvé)a { < Sla 51 < O}

THE CASE (i). By changing
p=T-0l-&) — o) =T —{& -+ B4~ &)},

we have

_ T+§3_£2"ﬂ
51(5—51) = 35—2 ,
e —g < THE-E—pl T +E -8yl

3¢ — 2 - 14
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From (4.12),

i, < C/ r+&— & —
T Jl<air-ote)) [E2IFY2(u) 2 /AT + €3 — 262 — 4y

du.

Since £ > 0, ¢(€) = €2 — €3, |s| > 1/2, (4.5) implies

i | +& — &
I < C|€|2\s|+1/2<47- T &3 — 2g2y1/2

and therefore

3 £2020s| 1/2
L < C £l R S
TS T — a1 (e) \ €2 (47 + €3 — 262)1/2
- |£l3/4—|s|<7. + 53 _ £2>ts|+b—-1
B (&)lsl(ar 4 €3 — 26%)1/4
- @1(€7T)'

Then ©1(&,7) is bounded when 3/4 —2|s| +3|s| +3b —3 = 3b +|s| —9/4
< 0 and this is fulfilled for some s, b, under the conditions of Lemma
4.5.

THE CASE (ii).
When (a) & > 0, setting

p=1— ¢~ &) — o) =71 {6 - & - 266 +3¢4(E - &)},
ale—6) = %{r L8 o),

) T gy m}
e gmsc{ e el
I A el
=3 g 2
3 _ 2
61| < 'T‘;(f, 53 = 2?" <|r+et—g—yl,
ae—g <olrr€-€-u

1€l
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Thus by (4.12)
heof ey
T Jluls2pr g 1612 ()2 /1127 + 3€3 — 4€ — 124

< |7 + €8 — g2
- |§12|s|+1/2<127. + 353 _ 4&)1/2

3 2/2(s| 1/2
L<c €] v+ €3 — g2)2ls
2= o) (el \ P2 (127 + 363 — 4g)1/?
< |§|3/4—-|s|<7. + 63 . €2>|s|+b-1
= 7T (g)bI(12r + 3¢3 — 46)1/4
= 82,0.(577-)'

Hence ©9,(¢,7) is bounded under the conditions for s,b,d of Lemma
4.5 on R¢ x R;.

When (b) £ <0, letting
p=T1—0(€ - &) — 9(&1)
=7 —{€ - & - 286 +3¢6(E - &)},

f1(6— €)= %{T L - 2(E—£)),

_THE+E—p

e -6) = "

then combining
3 2 _
e-e <THEEE M o i eie oy,
14 q
we see s
e(e -l < oTFE T E M

€l ’
and it follows from (4.12)

3 2, 12is

/|u|S2!T~¢(E)| |€[2ls141/2( )20 /1127 + 3€3 — 4€ — 12y
< o [+ € + €77
= |€]21s1+1/2(127 4 3€3 — 4£)1/2°
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Thus

L, <C IEI |7—+€3+§2|2|s| 1/2
2= O 9@ h M \ PR (Tar + 360 — 46172
< |£|3/4 |s|<7- + &3+ §2>Is|+b 1
=7 {o)lsl{127 4 3€3 — 4£)1/4
= 02,(£,7)-

Hence O3 ;(£,7) is bounded under the conditions of Lemma 4.5 on Re¢
x R,.

The case (iii) follows from analogous argument of (ii). The case (iv) also
follows similarly to (i). O

LEMMA 4.6. For any s € (—3/4,—1/2) , there exists b € (1/2,1)
such that for all b’ with b — b < min(|s| — 1/2,1/4 — |s|/3) we have the
following inequality for some C > 0.

S S—
< ¢u(£1 )

. / / lfl“ 'S'>|§§1(5 &2l drde 2
V(7 — Gy (120D (1 — 11 — Gy (€ — E))

where
B = B(£1,n)
={Eener|lE-alz1lal21,
[T = ¢ < |m — 8(&1)l,
=~ (€~ )] < |m — s}
Proof. As before, we set ¢(£) = ¢1(£). Over B, it holds |11 +¢ (£—£1)
—#(¢)| < 2|11 —¢ (&1)]. Therefore from (4.5),
/ dr
(1 — ()= — 71 — $(€ — &1))*

<C 1 .
= T+ (€ — &) — (8))20-0)
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Then it suffices to show that I(B’) < C, where

_ T AR
D)= (1= ¢(&))¥ (/D (€)Usl(11 + @€ — &1) — ¢(£))21-D) d§>

and

B' = B,(£177—1)
={{eR|lE-&|l>1,|G|>1,
IT1+ (€ — &) — 9(§)] < 2m — (&)1}

Then similarly before, we divide the region B’ into four cases

(1) {(élag)y 5 2 €17 51 > O}v (ll) {(61’6)) f > Ely &l < 0}7
(lll) {(51’6)5 5 < 61’ 61 > 0}7 (lV) {(glaf)a § < él) 61 < 0}
THE CASE (i). Bj={{e€B'| £>£&,¢>0},

T+ € &) —d8) = —{&* - &P+ (2- 3G (6 - &)}
Here we divide B = {¢ € B; |¢| > &, € > 0} into the cases B}, =
Bin{& <0} = B, UBZ and B|_ = B;n{¢ < 0} = B UBZ2,
where

B ={¢eBjo<g,

2398 - &)l < 3ln ~ &~ &),
B ={¢eBjj0<4g,

51 = (62 = &%) < 1(2 - 39 (€ - )

(.2 _ ¢33
(414) <3lm - (&° - &)}
B! ={¢eB]|0>¢,

12661 — 3861(€ - &1)| < %|7'1 — (&2 + &) )
B2 ={¢eBj| 0>¢,
Sl + 62+ 6] < 266 — 3¢6a(€ - €)
<3+ &2+ &3)).
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On By, we see that
(115) Je6a(e ~ &)l < 12 - 30066 ~ &) < i F &+ &)
(16) Sin+ &0 F6T <In - {62 - &0 +(2 - 306 - )
(117) [el <12~ 3006 - )] < 5lnF &2+ &%),

I(B)
1

<
T~ (&2 =&)Y
(&)Usl(ry — {&2 €3+ (2~ 35)51(5 £ DI

1/2
< Clm = (&% — )0+ (/ Mdf)
J el<tin—e2-a%) ()

< C<7_1 _ (512 N 613»—b’+|s|+b—-1——2|s]+3/2'

The last function is bounded since —b' + |s| + b — 1 — 2[s| + 3/2 =
b—b —|s|+1/2<0.

Similarly,
I(ByL)

3, £ 2\—b+|s|+b-1 |21 leD e
< C{n+ &7+ &)™ / = d£
gl<iintetra? (€2

< Clm + &%+ &2)7VH-lF2 < )

since —b' +b— |s|+1/2 < 0. Next we split By into Bi%', Bi%# and B{%,
where
B2 ={¢eBL | [€l/4 <& <100 },

B ={¢eBi| 1<lal<lg/a},
B ={¢ e B | 100i¢] <&l }
For the estimate on Bj%,
(4.18) leg1(€ — &)] < 12— 30)&1(E — &)| < 3l — (&% = &),
While over Bj2,
(4.19) Cinx&a?+&*) <Claf’ ~Clgf
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we see
I(B2)
<nF&a’+63H7Y

<(/ €20 -2Dlegs (¢ — £1) PHlag v
(mF &2+ 6% - (2-30)&(€ — £))20-D)

(by setting p; = 71 ¥ G2+ &7 - (2-39)&(6 - &)
< C<T1:F§1 +£1 > +(1-2|s)/3+]|s|

1

2
/ dp
X
lp1]<3lmFE1*+61%) |§1|%<,u1)2(1~b) \/|127—1 + 36,3 — 4€; — 12|

1
Clr F &2 + &3) 0 +1-20s/3+1s|-1/12 (1 F &2+ &3)20-1/2)\ 2
(1271 + 36,3 — 4£,)1/2

(Tl T &-12 + 613>—b’+(1—2|s|)/3+[s|——1/12+b—1/2
(1271 + 36,3 — 4£;)1/4

This is bounded since —b' + (1 — 2|s|)/3+ |s| = 1/12+ b~ 1/2 = ~b +
b+1s|/3—-1/4<0. :

<C

When B2 U B%
(4.20) 6§ —3& — 2| ~ [€] ~ [€ ~ &,

(@21)  Sin - (62 - &%) < |2 - 306a(6 — &) ~ 6Pl < Clel,

setting p) = 71 — {617 — £° + (2 — 36)&1(€ — &1)}, we see
I(B2 U B®)
<(m—(&2-&3)"Y

</ [€P0-2D gy (¢ — €)Wl v
(n —{&° - &%+ (2 - 36)&1(6 — &)})20-D)

< C<7'1 _ (512 _ 513» —b'+(1-2|s|)/3+]s}

1/2
% / duy
lual<2lm — (€12 -£,%)] (11)2A=9|&1]|6€ — 3¢, — 2|
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(by using (4.20))

< C(Tl _ (612 _ 613)>—b’+(1~2|s|)/3+|s[

1/2
% / du
l<2im — (€ 2—62)) ()23 |2 (16 21€])
(by using (4.21))

< C<7'l _ (512 _ 613)>—b'+(1—2|s|)/3+|s|

1/2
x/ dp
i<zl —(62-¢,9) (p1)20=0(r — (&% — &°))1/?
< Clry = (& = )N/

i 1/2
< [ . -
u1l<2m (62 —63)] (H1)

<

(r1 — (612 — £,3))~Y HO-21s/3+ls|=1 /44614172,

This is also bounded since —b + (1 —2|s])/3 +|s| —1/4+b—-14+1/2 =
—b +b+]s|/3—-5/12 <0.

!
Now on Bj*

|66 — 361 — 2| ~ |€] ~ [€ — &

4.2
(422) oo s e < (266 - 3661(E — €] ~ €PI6] < CIEP
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I(B®)
<Cln+&2+6%7Y
/
x / €20-2IsD gy (¢ — &) Psldpy |
lurl<2im+ed 462 1€1]12 — 3&1 + 6€[(up)2(1-H)

< C<T1 _+_é~13 +§12>—b’+(1~2|s|)/3+]s|

1/2
x / duy
1] <21 +613+€12 (11)21-9) |£1|1/2 (n+ 513 + §I2>1/2
< C(Tl +§13 +612>—b’+(1—2]s|)/3+|s|—1/4

p 1/2
x / A
le1]<2|m+€13+612 {p1)21-8)

< Ol + 68 +§12>—b'+(1—2lsl)/3+|s|-—l/4+b—1+1/27

which is bounded since —b' + (1 —2|s)/3 + |s| = 1/4+b—~1+1/2 =
—b +b+|s|/3—5/12 < 0.

’
On B;%3, we can see

(4.23) In+ &%+ &% < Clal?,
(4.24) 127 +36% — 41| ~ [&1 .
Therefore

I(B%)

< Clmy + &3 + £,2) Vsl

1

2
" o
I S2Am+60 4607 (g2 () 2(1-0) \/11271 +36° — 481 — 12|

1
< Cr + 67 + g2 HsI-1/12 (1 + &3 +62)20-1/2) \ 2
. (12r + 36,3 — 4£)) 2
< Clm + &5 + &)V Hlsl=1/124b-1/2-1/4

which is bounded since —b'+[s|—1/12+b—1/2—1/4 = —b'+b+|s|-5/6 <
0.
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CASE (ii).  As before we set By = {{ € B’ | £€> &, & <0} Then
we observe that on B, pu1 = 11 + ¢(€ — €1) — #(&1) =11 + g3+ e+
(361 — 2)6(€ — &),

duy = (361 + 2)(26 — £2)dea,

1 4py — €3 — 262 —4m

(36 +2)(26 — £1)] = 1361 + D2/ lam + &5+ 261° — .
Let B} = Byl U By, where

By = (€ € By 136 +26(€ ~ )] < 5l +&°+ &),
B? = {¢ € By| %'7'1 + &3+ 6% <136 +2)E(E — &)
<3ln+&*+ &’}
We have over B,', we have
%|T1 +el+ &l < Im+ &P+ 6%+ (86 - 2)6(¢E - &) |,
(@35) (€ < |36 + 26 - &) < i+ &% + &7,

€61(6 — &)] < gl + &0+

Therefore
I(BY) < C{m +&°+ g2yt sl

(4.26) / |§|2(1—|5|)df 1/2
. X —
El<dinret+a? ()2

< C<T1 +€13 +{12>—b’+|si+b—1——2|s|+2/3‘
Now we note that —b' + |s| +b—1—2|s| +2/3=b—b"+1/2—|s] < 0.
Hence (4.26) is bounded by a constant.
Let B2 = B2 U By?2, where
B = {¢ € B| [¢] < |&1] < 100[¢]},
By = {¢ € BY| 100[¢| < &}
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t
Over By?!, we have

(4.27) Clm+&%+&? < e ~Jgf
and

I(By)
< Clry + 63 + £,2) Y Hlsl+(1-2s])/3

dyy
<\
( il <2Am+e*+6a%] (117)20-0) 3¢y + 2] \/147'1 +&°+26° - 4#1')
< C<7‘1 +§13 +612>——b’+|s!+(1—2|s|)/3—1/12
1/2
e €15 + £,2)20-1/2) /
(4 + &5 + 263)1/2
<7.1 +£13 +£12>b—b’+|sl/3—1/4
¢ 3 2\y1/4
(A + &° + 26.%)Y
This is bounded since b — ¥’ + |s|/3 —1/4 < 0.

/
On By?%, we have

(4.28) I+ &3+ &% < el
(4.29) 47y + &% + 26| ~ &P
and then

I(B)

< C(Tl +§13 +€12)—b'+|s[

“(/
|12 +€13+612

1/2
y dp )
(p1)?1-9)(3¢; + 2|1/2\/14T1 + &% +26% — 4|

, 3, ¢ 220—-1/2)\ /2
< C(m + &%+ %)Y Hsl-y12 (<Tl +6°+&7) )

(4m + &3 +26,%)1/2
< Clr + 643 + £2) Y Hlsl=1/12-1/a4b-1/2.

which is bounded since —b'+|s|—1/12—1/4+b—1/2 = b—b'+|s|—5/6 < 0.

[N
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The case (iii) follows from analogous argument of (ii). The case (iv) also
follows similarly to (i). O

We now stand the place for proving Proposition 4.2.
Proof for Proposition 4.2.

When s = 0, from Lemma 4.4 and Schwartz’s inequality,

S S
(T — (N

glaTl f(g gla )
// (m— (&)Y (1 =11 — (€~ f))bld&ldﬁ

§
(T = ¢u(§)°

1/2
d§1d7'1
x (// <Tl - ¢1/(£1)>2b/ <T —T1 - ¢)V(‘£ - 51)>2b/>

<// (€, m)PIF(E = &7 — T1)|2d€1drl)l/2

< ClfIZzs2-

272
1212

<

Ly Lge

LgL2

Next for |s| = —s € (1/2,3/4), when |[£1| < 1 or |£ — & | < 1, it holds

(&)l — el < CgM
and this case is reduced when |s| = 0.

Now the other case, |£1] > 1 B+ D(J |€ — &1| > 1, by the symmetry,
we may assume that |7 — 71 — ¢, (§ — &1)| < |1 — ¢ (&1)| without losing
the generality.

We divide the integral region into two parts:
(1) Im = ¢ (&)] < 7 = & (§)] and
(2) 11 — ¢ (&1)| 2 I7 — ¢u(§)]-
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THE CASE (1).  Since (§,71) € A, by applying Lemma 4.5 and
Schwartz inequality, it follows

3
(T = ¢y ()1 (&)

51,71 |S|f — &, 7 — )€ — &)
<[] % A T

212
3
S |T=am@rrE—am
/ / l& e &) [2ldg,dry e
(11 — ¢ (€ (=11 — (€ — a))® L1
1/2
([ 1560 mPiste - 617 - roPaguan)
1212
< C||f||ing-
For the case (2),
£
h(€,7) =
)= e n @
fm) &) 's' FlE =&, —m)(€— &)
// —ou(61))Y (T—11 — (€ — &)Y ddr,
1 if (&1,7m) € B(,€),
xe = Xx2(§1,71) = {0 :)therlw;:e. !
Let g(¢,7) € LZL2. By using Lemma 4.6,
L2L2
// If Elle)I
2 (11 — o (€1))Y
/ / 19 DIFE = &7 = mllg]llgga (€ — &)1
(VT — P (N1 — 11 — G (€ — &1))Y

x d{dT) dérdm
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<C// )] (// o€, TPIF(€ - sl,T-nl?dsdT)l/2

¢u €I)>

|§|2(1 18|)|£§1(§ ﬁl)lzisldﬁd’r 1/2
(// VST (7 — o (€)20—D) (1 — 71 — Gy (€ — £1))20 déidm

1/2
< C//R2 Lf (&1, 1)l (/ - lg(&, T)PIF(€ — &, 7 - Tllzdde) dédm

1/2 12
<C <//}R2 |f('51,’r1)|2d§1d7'1> (/ g lg|? * |f|2(f1,7'1)d§1drl>

< CHgHLngllingLa-
Therefore by duality, we conclude that
Il z2re < ClFIZ2Le

and the proof is now complete. O

5. Proof of the well-posedness

By the Duhamel principle, we consider the integral equation

(5.1) u(t) = W, uo—/ W (t — )0, (2(t))dt'

which is equivalent to the Cauchy problem. Hence we show the existence
of the solution u to the integral equation (5.1).
Let

¢
B(u) = B(OW, (thuo — wlt) | Walt =)o~ )0u 07
and suppose that w is in

B ={ue X*| lull xs» < 2C]|luollas}-
According to Proposition 3.3, @ can be bounded as follows:

@) oo < [T HYW (E)uo]| o0
t) /t Wt — (671, (W2 (t))dt!
0

< Clluollas + Cllw ()0 (u? (Dl -1

Xt
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Here we choose b such that b < b < 3/4,b—b < min{—s—1/2,1/4+s/3}.
Then since w € B, Proposition 3.2 (3.7) and Proposition 4.1 yield that

[@(llyze < Clluollas +C 10wl 5

IA

Cluollus + C8*llull%,.
< Clluollas + 4387 |ug %

Hence by choosing § small such that 40265“b|[u0“%3 < 1/2, we see
®(u) € B. Also for u,a € B,

12(a@) — @(w)l[xsr < C&lla+ull ysell@ — ull yoo
< 4C%% 0 — ) o
1
< gl ullgge.

Therefore ® is a contraction mapping on B. By the Banach fixed point
theorem, there exists a solution u € B such that

t
u(t) = B(t) (Wu(t)uo - [we- t’)w(é-lt’wm<u2<t'))dt') .

If we choose T' < min{4/2,1/2}, then u(t) can be regarded as a
solution of (5.1) over t € [T, T}. This and similar argument found in
[3] shows the existence and uniqueness of the local solution to (1.1).

The continuity for the solution in H* directly follows from the Sobolev
imbedding H®(Ry; H®) C C(Ry; H®) The continuous dependence for the
initial data also follows from a similar argument.

Next we show the uniqueness of the solution in the above class. For
simplicity, we show the uniqueness of the solution to (1.2) with v = 0.
The general case follows similar argument. We introduce the following
auxiliary norms. For T > 0, we let

lullx, = igf{HwHXs,b cw € X5®  such that
u(t) =w(t) te€[0,T]in H’}.

Obviously, if |luy — uz]lx, = 0, we have u;(t) = ug(t) in H® for
te[0,T].

Let u; be the solution obtained above and u; be a solution of the
integral equation with the same initial data ug. We assume that for
some M > 0,

(53) etz Iy < M.

(5.2)
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Without loss of generality, we may assume that 1 < M and T < 1.
For some T* < T which will be fixed later, we have

Yua(t) = ()W, (t)uo

(5.4) _Mﬂﬁg%@_ywpwwﬂw@mxwfw

for t € [0,T™].
Consider the difference u; — ©us. For any ¢ > 0, there exists w € X,f’b
such that for ¢ € [0,T™],

(5.5) w(t) = w(t) — Y[)ua(?),
and
(5.6) [wllyso < lluy — Ypuzllx,. +e.

Set @ satisfying

w(t) = — (1) /0 W, (t — t Yr O {w(t us ()
()W (t ua () Yt

By (4.5) we have &(t) = w(t) = w1 — Y(t)uq(t) for t € [0,T*].
Then according to Proposition 3.2, Proposition 3.3 and Proposition
4.1, we have for b < b’ < 3/4 and p = (b' — b)/4¥,

(5.7)

lur = Puslxp <@ s
< Cllgr-{wur + Ywus}l| yar -
< CsT™(lwll s lluall oo + lwll o luzllxs0)
< T ] s

(5.8)

1
If T+ S LM we have

1
fluir — Yuallxp. < 5”(&)“)(5,17.

By (5.6), we conclude
lur — Yugllxr. < 2e.

This proves u; = ug on [0,7*]. Repeating this procedure, we obtain the
uniqueness result for any existence interval. O



Well-posedness for Benjamin equation 1231
6. The limiting problem - proof of Theorem 2.2

In this section we prove Theorem 2.2. To show our theorem, we first
consider the regular solutions w, for (1.3) and the regular solutions u
for (1.4) with the same initial data ug € H®. By an approximation
procedure the conclusion follows from the well-posedness results already
established.

Proof of Theorem 2.2. Let u, be a unique solution of (1.1) in C([0, 00);
H?®) and let v be a solution of (1.2) in the same space both with ini-

tial data ug € H3. Without loss of generality, we may assume that
0<v<1/2

We fix the time interval [0,77] so that each of the solutions satisfy the
following

(6.1) ol st ”'U”Xg,b <M forallvel01/2.

We note that u, has enough regularity to satisfy the equation (1.1) in the
strong sense, so we have the solution to the integral equation associated
with (1.2)

w (£) = Wo(t)uo — / Wolt — ¢) (Bu2(¢) — vHL 02w (¢) dt.
and we have the followinog formular for a solution v of (1.2),
v(t) = Wo(t)ug — /t Wo(t — t")ov2(t)dt'.
Then the difference satisfies ’
wlt)=v(0) =~ [ Walt ~ ) {Bu (! — o(t)?) oMo} .

Then by taking the norms || - || s, we have by (2.4) in Proposition
0
3.2 and 3.3 and Proposition 4.1 with v = 0 that

ity = ] e

< \lz/;/otwo(t—t’)

(6.2) x {(w () + o) (un (t') — v(t))) ~ vHL0%u, (')} dt!

x5t
< O (Jluy + vl g lluw = vll gar + [l luw s e2-1)
< CH(Mljuy — vl o + lllul| oo (1 m2))-
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Here we should note that all the estimates from Proposition 3.2 Propo-
sition 3.3 and Proposition 4.1 is independent of the parameter v. Hence
if

1
< ——
~ 2CM’
then
124 v
63l vilgeo < Dl grnos < Ll

By (6.3), we have
ey = vll 0 — 0

as v — Q.

Now we prove the general case. For any initial data uy € H® we choose
a sequence uf} € H3 such that

(6.4) ug — Up in H°

Let 1, is the corresponding solution to the Benjamin equation (1.1) and
v is the solution to the KdV equation (1.2). Since both solutions 1,
and ¥ can be found in C([0,T,]; H?), by combining Theorem 2.1 and the
above conclusion, we have that

lluy = vl xor < lluy = @ull e + 18 = Bll oo + 117 = v yoo
(6.5) < C(T)(llug — vollrs + lfug — uollss)
+ M2 020 || ge (112) -
By letting v — 0

limsz)lp f[uy — ’U“Xg,b < Cllug — uol|as
v—

and passing n — oo we have that uf — ug and
(6.6) up —u in Xg’b.

Repeating this procedure, we have the conclusion for the desired time
interval. OdJ
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