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INTEGRAL GRUSS INEQUALITY
FOR MAPPINGS WITH VALUES IN
HILBERT SPACES AND APPLICATIONS

S. S. DRAGOMIR

ABSTRACT. In this paper we prove a version of Griiss’ integral in-
equality for mappings with values in Hilbert spaces. Some applica-
tions for convex functions defined on Hilbert spaces are also given.

1. Introduction

In 1935, G. Griiss proved the following integral inequality [12]

(1.1) ]————/f x)d:c——m/f ydz - bla/abg(a:)dm

S(‘P¢( 7)),

provided that f and g are two integrable functions on [a, b] and satisfy
the condition
(1.2) d< f(z)<®andy<g(x) <T for ae. z € [a,b].
The constant % is the best possible and is achieved for
a+b
F&) = g(e) =5 (2= 257).

The discrete version of (1.1) states that:
Ha<a, <A b<b <B(i=1,..,n) where a, A, a;,b, B, b; are real
numbers, then

1 ¢ 1o 1 ¢
(13) Ezlazbl——ﬁzlaz;izlbz < -
i= i= =

1
<j(A-a)(B-3),

where the constant % is the best possible.
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For an entire chapter devoted to the history of this inequality see the
book [14] where further references are given.

New results in the domain can be found in the papers [1]-[9] and [13].

In the recent paper [2], the author proved the following generalization
in inner product spaces.

THEOREM 1. Let (X, (-,-)) be an inner product space over K,K =
C,Rande€ X,|e|| =1. If$,®,7v,T € K and z,y € X are such that

(1.4) Re (®Pe — x,2 — ¢e) > 0 and Re (T'e — y,y — ve) > 0,
holds, then we have the inequality

1
(1.5) (@, y) = (ze) (e p)| < 712 — ¢l IT =9l
The constant % is the best possible.

It has been shown in [1] that the above theorem, for real cases, con-
tains the usual integral and discrete Griiss inequality and also some
Griiss type inequalities for mappings defined on infinite intervals.

Namely, if p : (—00,00) — (—00,00) is a probabilistic density func-
tion, i.e., [ p(t)dt = 1, then p% € L? (—00,0) and obviously l p%

2

1. Consequently, if we assume that f,g € L? (—00,00) and
(1.6)  a-p2<f<y-p3,0-p2 < g<6-p? ae on (—00,00),

then we have the inequality

an | HOICE R ROY War- [ gt} <t)dt‘
< JW-0)©O-5).

Similarly, if { = () € 12 (R) with 3,y [if* = 1 and 2 = (2:);en, ¥ =
(i)sen € 12 (R) are such that
(1.8) a-li<zi <Y-L,B-L<y <01

for all 7 € N, then we have

1
(1.9) Zaziyi — Z:Bili : Zyz’li < 1 (¥ —a)(@-5).

€N ieN ieN
In this paper we point out a Griiss type inequality for Bochner mea-
surable functions with values in Hilbert spaces.
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2. Preliminary results

The following lemma holds.

LEMMA 1. Let (H;(-,-)) be a Hilbert space over the real or complex
number field K, f : Q — H a Bochner measurable function on ! C R”®
such that f € Ly (Q, H) and p: 2 — [0,00) a Lebesgue integrable
mapping on §) so that [, p(t)du(t) = 1. If there exists the vectors
z,X € H such that

(2.1) Re(X — f(t),f(t)—z) >0 forae te,

then we have the inequality

Lowis ol u - “ [ o7 ®ant

1
< ZHX_JUHQ-

22) 0 :

IA

The constant % is sharp.

Proof. Define
. <X~/Qp(t)f(t)du(t),/Qp(t)f(t)du(t)—:v>

L :=/Qp<t><X—f<t>,f<t>—x>du<t>.

Then obviously

L - / p () (X, £ (B) du (£) — (X, )
Q

and

2

—H/p(t)f(t)du(t) + [ o002 dutt)
Q Q
and
L - /Q p () (X, F (1)) dpu (1) — (X, )
—/p<t) 1|f(t>u2du<t>+/p(t) (), 2y du ).
Q Q
Consequently

(2.3) 11-12—/p(t 1f (O da (2 ”/
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Taking the real value in (2.3), we can state

2

e [pON @R - H [0 i@du

_ Re<X—/Qp(t)f(t)du(t),/Qp(t)f(t)du(t)—$>
—/Qp(t)Re<X—f<t>,f<t>—x>du<t>

which is an identity of interest in itself.
Using the assumption (2.1), we may conclude, by (2.4), that

2
@5 [ pOIf O o~ H /Q o () £ (2) dyu (8)
< Re<X—/Qp(t)f(t)du(t),/Qp(t)f(t)dﬂ(t)—w>-

It is known that if y, 2 € H, then
(2.6) 4Re (z,y) < [lz+ |,

with equality iff z = y.
Now, by (2.6), we can state that

Re<X—/p(t)f(t)du(t),/Qp(t)f(t)du(t)—:r>

2
HX [o@rwaner+ [ o) @ dutt) -

= 21X ol

Using (2.5), we deduce (2.2).
To prove the sharpness of the constant %, let us assume that the
inequality (2.2) holds with a constant ¢ > 0. That is,

o1 1P du H/ O O au]|
< X —al?

for any Q, u, p, f and x, X as above.
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Choose €2 = {1,2}, p(1) = p(2) = 1, u is the discrete measure on
and f (1) =z, f(2) = X (x # X). Then obviously

2 2
/p(t)||f(t)||2du(t) XA
Q 2

2 2
/p(t)f(t)du(t) I
0 2
and by (2.1), we deduce
2 2 2

el + X X e

which is clearly equivalent to
1
71X - z|? <c|X — |
implying that ¢ > %. O

REMARK 1. The assumption (2.1) can be replaced by the more gen-
eral condition

(2.7) /p<t>Re<X—f<t>,f<t>—x> dui () > 0

Q
and the conclusion (2.2) will still be valid.

The following corollary is natural.

COROLLARY 1. Let g : @ — K be Lebesgue integrable on 2 and p be
as above. If a, A € K are such that

(2.8) Re [(A —g(t) (‘g‘@ - a)] >0 aeon

then we have the inequality
29 0 < [owlofdn-|[s0o0d0

< %lA—al2~

2

The constant % is sharp.

REMARK 2. The condition (2.8) can be replaced by the more general
assumption

(2.10) /Q p()Re (A~ 9(1) (70 ~a)] du() > 0.
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REMARK 3. If we assume that K = R, then (2.8) is equivalent with
(2.11) a<g(t)<A ae on{l
and then, with the assumption (2.11), we get the Griiss type inequality

2
e o< | p(t)gz(t)du(t)—(/ﬂ p(t)g(t)du(t)>

1
< Z(A"a)2-

3. An inequality of Griiss type

The following Griiss type inequality holds.

THEOREM 2. Let (H;(-,-)) be a Hilbert space over K, K=C, R,
f,g : @ — K be Bochner measurable and frge La(,H) and p: Q —
[0,00) Lebesgue integrable so that [ p(t)du(t) = 1. If there exists the
vectors x, X,y,Y € H such that

(3.1) Re(X —f(t),f(t)—z) >0 and Re(Y —g(t),g(t) —y) 20
for a.e. t on (1,

then we have the inequality

/Q p () (F (1) .9 () ds (1

(3:2) - </Qp(t)f(t) du (t),/gp(t)g(t) dp (t)>l

X ==zl Y -yl

<

=

The constant ;11 is sharp.

Proof. A simple calculation shows that

/ o (8) (7 (£) 9 (£)) du (1)

(33) < [0, [ oo ant )

=%// p(5)(F () — £(),9(8) — 9.(5)) dps () du (5).
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Taking the modulus in both parts of (3.3), and using the generalised
triangle inequality, we obtain

/Q p (1) (f ()9 (£)) du (t)

60— ([p0r0d0, /Qp(t)gwu(t)ﬂ
<5 | [ r®p1f 0~ 106,90~ g () du(®)u(s).
By Schwartz’s inequality in inner product spaces, we have

3:5)  Kf (@)= f(8), 9O —gNI<IfE) = fS)llgt)—g(s)l

for all ¢, s € , and therefore

/Q o () (f ()9 (£)) du (8)

(3.6) -</ O£ @ due). [ p®3 du()>'
< 1F @ = £ () llg (8) — 0 (s)] e (2) i (5).
<5 [, Jyo0

Using the Cauchy-Buniakowski-Schwartz inequality for double integrals,
we can state that

(3.7) / / (1) p () I (&) = £ llg (8) — g ()l| dpe (£) s (s)

< (3] [rop@isc (8)Il2du(t)du(8))%
(5[ /ﬂ P00 lg() =g (9 du () ()"

As a simple calculation shows that

%/Q/Qp(t)/’(s) £ (&) — £ ()P du () du (s)
= [ r0lf @1 - H [ o)1 0 a0
& Q

=3
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and

1// () p(8) llg (t) — 9 ()12 dpe () da (5)

= [r@lsirau | [ sowano

then we obtain

/Q o (1) (F ()9 (8)) du (t)

—</Qp(t)f(t)du(t),/Qp(t)g(t)du(t)>‘
< (/ ) 1F (01 dus H/
x ( [ p®ls P duco - {| [ p®atan)

Using Lemma 1, we know that

(/Q O - | [ o0 @) dut

and

N
(/p<t> MCIRACE JRICHOED ) <Ly -y
Q Q

and then, by (3.8), we deduce the desired inequality (3.2).
The sharpness of the constant is obvious by Lemma 1 and we omit
the details. O

2

(3.8)

REMARK 4. The condition (3.1) can be replaced by the more general
assumption:

(3.9) /Q p(ORe(X — F(t).f(t) —z)du(t) > O,
/Qp<t>Re<Y—g<t>,g<t>—y>du<t> > 0

and the conclusion (3.2) still remains valid.

The following corollary for real or complex functions holds.
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COROLLARY 2. Let f,g:Q — K be in Ly (£, K) and p: 2 — [0, 00)
be as above. If a, A, b, B € K are such that

(310)  Re|(4-f@) (FO-a)] > o,
Re [(B - g (1) (m - 5)] > 0 forae teq,

then we have the inequality

(3.11)

/p(t)f(t)@(t)du(t)—/p<t>f(t>du<t)~/p(t)@(t)dm'
Q Q Q

< ?A—MB—M

and the constant % is sharp.

The proof is obvious by Theorem 2 applied for the Hilbert space
(K, (), {(z,y) = z - §. We omit the details.

REMARK 5. The condition (3.10) can be replaced by the more general
condition

(3.12) /Q pORe[(A- 1) (T -a)]dut) > o,
/Q p(O)Re (B~ (1) (570 ~B)] du(®

v
=)

and the conclusion of the above corollary will still remain valid.

REMARK 6. If we assume that f,g,a,b, A, B are real, then (3.10) is
equivalent to

(3.13) a< f(t)<A b<g(t)y<Bforae. ton,

and (3.11) becomes

(3.14) {/Qpa)f(t)g(t)du(t)—/Qp(wf(t)du(t)~/Qp(t)g(t>du(t){
< A-a)(B-b)

which is the classical Griiss inequality for real valued functions.
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4. Applications for convex functions

Let (H;(-,-)) be a real Hilbert space and F : H — R a Fréchet differ-
entiable convex mapping on H. Then we have the “gradient inequality”,
that is,

(4.1) F(z)—F(y) 2(VF (y),z~y)

for all z,y € H, where VF : H — H is the gradient operator associated
to the convex function F'.

The following theorem containing a reverse inequality for Jensen’s
inequality for the measurable space £ with u (£2) < oo, holds.

THEOREM 3. Let F : H — R be as above, f : & — H a Bochner
measurable function such that there exists the vectors n, N € H with
the property

(4.2) (f(t) —n,N—f(t)) >0 a.e. onfl,
and the vectors m, M € H such that
(4.3) (VF(f(t))—m,M —VF(f(t)) >0 ae onfl

If p :  — [0, 00) is Lebesgue measurable on Q such that [, p (t) du (t) >
0 and pF (f (1)) € L(), p- f € L(Q, H), then we have the mequahty

a0 0 < o PO F U O

(1 o O )
< LU -l M =l

Proof. Choose in (4.1)

r=m/ﬂp(t)f(t)du(t) and y = f(s)

to obtain

(4.5) (W / ) £ 1) du(t)>—F(f(8))
> (VPG D T e ®F OO - 16))

for a.e. s € 1.
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If we multiply (4.5) by p(s) > 0 and integrate on 2, we have

1
/ p(S)du(S)F<m / p(t)f(t)du(t)>
—/Qp<s> (F o f)(s) du(s)

1
> W</ﬂp(t)<(VF)°(f))(S)du(t),/ﬂp(t)f(t)d#(t)>
- [P TP ) £ Ddu(s).

Dividing by [, p (t) du (t) > 0, we obtain the inequality

(46) 0 < m /Q p(5) (F o f) () du(s)

1
F (———fgp(t) i fr0 1O (t))

m /ﬂ p(t) ((VF) o f)(t), f(t)du (t))

—<m/ﬂp(t)(VF°f)(t)du(t),
1
T L0 wa)

which is a generalisation for the case of inner product spaces of the
result by Dragomir-Goh established in 1996 for the case of differentiable
mappings defined on R" [10].

Applying Theorem 1 for the case of real inner product spaces, X = N,
z=mn,g(t)=(VFop)(t),y=m,Y = M, we easily deduce

IA

1
(47) o0 am O TF o0 @) @) du e

~<m/9f>(t)(w%f) (t) du (t),

1
TrRE O Oa)
<IN —nll |3 = m]
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and then, by (4.6) and (4.7), we can conclude that the desired inequality
(4.4) holds. a

REMARK 7. The conditions (4.2) and (4.3) can be replaced by the
more general assumptions

(48) JRCECEE S ORACED

and

49 [pOUTFNE =m M= (TF o )(0)du(t)20
and the conclusion (4.4) will still be valid.

REMARK 8. Even if the inequality (4.4) is not as sharp as (4.6), it
can be more useful in practice when only some bounds of the gradient
operator VF and the mapping f are known. On other words, it provides
the opportunity to estimate the difference

1
A(F,f.p) W/pu) (F o f) (t) dpu (2)

(fgp ) dp ( t)/ ) f (@) du(t)>

when the differences | N — n|| and ||[M — m|| are known.
For example, if we know that

(VFo f)(t)—m,M —(VFo f)(t))

> (0 forae. tef
(ft)y-n,N—f(t)) =2 0

for a.e. t € Q,

and

IN —n|| < (e>0),

4e
|M = m]|
then by (4.4) we can conclude that
0<A(F f,p) Le.
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