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ON SEMI-INVARIANT SUBMANIFOLDS OF
LORENTZIAN ALMOST PARACONTACT MANIFOLDS

MUuUKUT MANI TRIPATHI

ABSTRACT. Semi-invariant submanifolds of Lorentzian almost paracontact mani-
folds are studied. Integrability of certain distributions on the submanifold are in-
vestigated. It has been proved that a L P-Sasakian manifold does not admit a proper
semi-invariant submanifold.

1. INTRODUCTION

Matsumoto (7] introduced the notion of a Lorentzian almost paracontact mani-
fold. Submanifolds of a Lorentzian almost paracontact manifold have been studied
in Prasad and Ojha [11]. In the present paper we study semi-invariant submani-
folds of Lorentzian almost paracontact manifolds. The paper is organized as follows.
Section 2 is devoted to preliminaries. In Section 3 some necessary and sufficient
conditions for integrability of certain distributions on semi-invariant submanifolds
are obtained. In the last section (Section 4), it has been shown that a L P-Sasakian

manifold does not admit a proper semi-invariant submanifold.

2. PRELIMINARIES

Let M be a Lorentzian almost paracontact manifold (cf. [7], [8]) with a Lorentzian
almost paracontact structure (¢, &, 7, g), that is, ¢ is a (1, 1) tensor field, £ is a (time-
like) vector field, 7 is a 1-form and g is a Lorentzian metric on A such that

¢ =I+n®¢ n()=-1, ¢=0, nog=0, (1)
9(¢X,8Y) = g(X,Y) + n(X)n(Y), (2)
(X,Y) = g(¢X,Y) = g(X,¢Y) = (Y, X), g(X,§) =n(X) (3)
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forall X, Y € TM.

A Lorentzian almost paracontact manifold is called (cf. Matsumoto [7]):

Lorentzian paracontact manifold if

B(X,Y) = L (TxmY + (Fr n)X), @)
Lorentzian para-Sasakian (in brief, LP-Sasakian) manifold if
(Vx )Y = g(¢X,0Y )¢ +n(Y)¢*X, (5)
Lorentzian special para-Sasakian (in brief, LSP-Sasakian)manifold if
(X,Y) =eg(¢pX,9Y), > =1 (6)

Here V is the covariant differentiation with respect to g.

Let M be a submanifold of a Lorentzian almost paracontact manifold M with
Lorentzian almost paracontact structure (¢,¢,7,9). Let the induced metric on M
also be denoted by g. Then Gauss and Weingarten formulae are given respectively
by

VxY =VxY +h(X,Y) X,Y €TM, (7)
UxN =-AyX +VxN NeT'M, (8)
where V is the induced connection on M,h is the second fundamental form of the

immersion, and —AyX and V4N (resp.) are the tangential and normal (resp.)
parts of VxN. From (7) and (8) one gets

g(h(X’Y)’N)zg(ANXaY)' (9)
Moreover, we have
(Vx@)Y (10)
= ((VxP)Y —Apy X —th(X,Y))+((Vx F)Y +h(X, PY) - fh(X,Y)),
(Vx¢)N (1)
= ((Vxt)N — AsnX — PANX) + ((Vxf)N + h(X,tN) — FANX),
where '
¢X = PX + FX; PX € TM, FX € T* M, (12)
¢N =tN + fN; tNeTM, fNeT M, (13)
(VxP)Y = VxPY — PVxY, (14)

(VxF)Y = VxFY — FVxY, (15)
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(Vxt)N = VxtN — tVxN, (16)
(Vxf)N = VxfN — fV%N. (17)

Let £ € TM. We write TM = {£}@®{¢}+, where {¢} is the distribution spanned
by ¢ and {¢}* is the complementary orthogonal distribution of {¢} in M. Then we

get
P¢=0=F¢, noP=0=noF, (18)
P24+tF=I4+n®¢ FP+fF=0, (19)
fP+Ft=1I, tf+Pt=0, (20)
ker(P) = ker(P?) = ker(tF — I —n ® £), (21)
ker(F) = ker(tF) = ker(P?> - I —n ® £), (22)
ker(t) = ker(Ft) = ker(f* — I, (23)
ker(f) = ker(f?) = ker(Ft + I) (24)
ker(P|gy1) = ker(P?(gy1) = ker(tF| gy 1), (25)
ker(F|(gy) = ker(tF|gey.) = ker(P¥ 0 —I). (26)

A submanifold M of a Lorentzian almost paracontact manifold M with £ € TM
is called a semi-invariant submanifold of M if TM can be decomposed as a direct
sum of mutually orthogonal differentiable distributions :

TM =D' ¢ D’ & {¢},

where

D' = ker(Fligs) = {X € {&}*: | X|| = |PX||} = TM N ¢(TM),

D° = ker(Plgg1) = {X € {6} X1l = | FX|I} = TM N $(TM).
Moreover, we have

TiM = D' ¢ D°
where
D! = ker(t) = Tt M N (T M), D° = ker(f) = T+ M N $(TM), FD° = D°,
and tD° = D°. For X € TM we can write
X=U'X+UX - n(X)¢ (27)
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where U! and U are projection operators of TM on D' and D° respectively.

A semi-invariant submanifold of a Lorentzian almost paracontact manifold is a in-
variant submanifold (resp. anti-invariant submanifold) if D° = {0} (resp. D! = {0}).
A semi-invariant submanifold is proper if D° # {0} # D'.

3. INTEGRABILITY CONDITIONS

Let M be a semi-invariant submanifold of a Lorentzian almost paracontact man-
ifold M. The Nijenhuis tensor [¢, #] of ¢ is given by

(6, 81(X,Y) = ¢*[X, Y] + [¢X, 9Y] — 4[¢X,Y] — ¢ X, 4Y], (28)
for X,Y € TM. Using (1), (27), (12) and ker(F) = D! @ {¢}, for X,Y € D! @ {¢}

we get .
[6,4](X,Y) = [P, P}(X,Y) + U’(X,Y] - F([PX,Y]+[X,PY]).  (29)
Let superscripts T and L in a term denote its tangential and normal parts re-

spectively. From (29) we can state the following.

Proposition 3.1. If M is a semi-invariant submanifold of a Lorentzian almost
paracontact manifold, then for X,Y € D'@®{¢} we get

(4, ¢1(X, Y))T = [P, P)(X,Y) + U°[X,Y], (30)
([, 8)(X,Y))" = —F ([PX,Y] + [X, PY)). (31)
Consequently, for X € D*@&{¢} we have
(I8, 81(X, €))7 = [P, P)(X, &) + U°[X, &), (32)
(6, 41(X, )" = —F[PX,¢]. (33)

In the following theorem, we find some necessary and sufficient condition for
the integrability of the distribution D'@{¢} on a semi-invariant submanifold of a
Lorentzian almost paracontact manifold.

Theorm 3.2. Let M be a semi-invariant submanifold of a Lorentzian almost para-
contact manifold. Then the following three statements are equivalent:

(a) The distribution D' @{£} is integrable.

(b) (¢, 41X, V)T = [P, PI(X,Y), XY €D'@{¢}.

(©) (641X, Y)" =0, U°PP|(X,Y)=0, X,YeD'@{c}
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Proof. The distribution D@ {¢} is integrable if and only if
U%X,Y]=0 forX,Y ¢ D'@{¢}.

In view of (30) it follows that (a)&(b).

Next, since
[P,P)(X,Y)=U'X,Y] + [PX,PY] - P[PX,Y] - P[X,PY), X,Y e D'e{¢},
operating by U? to this equation, in view of integrability of D@ {¢}, we get
U'P,P)(X,Y)=0, X,Y ecD'a{¢}.
Taking account of (31), the integrability of D'@{¢} indicates
(41X, Y))" =0, X,Y eD'of¢}

Thus (a) = (c).
Conversely, let (c) be true. Then by (31) and FX = ¢U%X, we get

sU° ([PX,Y]+[X,PY])=0, X,Y e D'o{¢}.
which operated by ¢ yields
U ([PX,Y]+[X,PY])=0, X,Y e D'a{¢)}. (34)
Next from U°[P, P|(X,Y) =0, for X,Y € D'@{¢}, we get
U’[PX,PY]=0. (35)
Now for X,Y € D! from (35) we have U°[X,Y] = 0. In view of (34), we also have
0=U°([PX,PE + [P°X,£]) =U°X,¢, XeD.
Thus taking account of
U%X,Y)=0=U%X,¢, X eD},
we get
UX,Y]=0 X, YeD'o{,
which makes (c) =(a). a
Theorm 3.3. The distribution D°®{¢} on a semi-invariant submanifold M of a

Lorentzian almost paracontact manifold M is integrable if and only if

[P,P](X,Y)=0, X,YeD's{¢)}.



6 MukuT MANI TRIPATHI

Proof. In view of ker(P) = D°@{¢} and
[P,P|(X,Y) = [PX, PY] + P}[X,Y] - P[PX,Y] - P[X,PY], X,YeTM,

the proof follows immediately. |

4. NONEXISTENCE OF PROPER SEMI-INVARIANT SUBMANIFOLDS

From the definition of LP-Sasakian manifold, we get
¢X = Vxé, X,Y € TM. (36)

We call a Lorentzian almost paracontact manifold M, a Lorentzian special paracon-
tact manifold if it satisfies (36). Obviously, a LP-Sasakian manifold is a Lorentzian

special paracontact manifold. Now, we prove the following theorem.

Theorm 4.1. On a Lorentzian special paracontact manifold M the distribution T
determined by n is integrable.

Proof. Let X,Y € T. Then n(X) = 0 = n(Y) and consequently, in view of (2), from
(36) and (3) it follows that n{X,Y] =0, for X,Y € T. O

This theorem implies the following theorem.

Theorm 4.2. Let M be a semi-invariant submanifold of a Lorentzian special para-
contact manifold. Then the distribution D' @DP is integrable.

Let M be a submanifold of a Lorentzian special paracontact manifold M with
&£ € TM. Then, in view of (36), from (7) and (12) we get

PX =Vx¢, FX =h(X,¢) (& tN = Ayf).

Consequently, we get

n(AnX) =g(FX,N). (37)
Moreover, if M is LP-Sasakian, then in view of (5) and (10) we get
(VxP)Y — Apy X — th(X,Y) = g(¢X, ¢Y )¢ + n(Y)¢*X. (38)

Finally, we prove the following theorem.

Theorm 4.3. A LP-Sasakian manifold does not admit a proper semi-invariant sub-

manifold.
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Proof. We shall prove that D° = {0}. Let X ¢ D® and Y € TM. We get
9(ArxX,Y) = g(h(Y,X),FX)=g(th(Y,X),X)
= g(VYPX—PVYX“AFXY—g(¢Y,¢X)£—T](X)¢2Y,X)
= —g(vaaPX)“g(AFXYaX)=_g(AFXX7Y))

which implies that
ApxX =0, XeD°

and consequently
0 =n(ArxX) = o(FX,FX) = g(¢X, ¢X) = g(X, X),
that is, D° = {0}.
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