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BEST PARAMETRIC APPROXIMATION IN C;(X)

HvyanGg JoO RHEE

ABSTRACT. In some problems of abstract approximation theory the approximating
set depends on some parameter p. In this paper, we make a set M(f) depends on
the element f, ¢ and then best approximations are sought from a subset M(f) of M.

1. INTRODUCTION

A theory of best approximation from a finite dimensional subspace U of a normed
linear space X is developed. In particular, to each 2 € X, best approximations are
sought from a subset U(z) of U which depends on the element z being approximated.

Let X be a compact set in R? and X = int X and g a non-atomic positive
finite measure defined on X, such that every real-valued continuous function is u-
measurable. Furthermore, p is assumed to have the property that if

e /X fldu=0 for feC(X)

then f = 0.
We let C1(X) denote the linear space C(X) with norm || - 1. The space C;(X)
is not a Banach space. It is a dense linear subspace of L;(X, u) and we have

(C1(X))* = L¥(X, ).

Let M be a finite dimensional subspace of C(X) and let ¢ € (C;(X))* with ||| = 1.
For each f € C1(X), let

M(f) = {y € M{o(y) < o(f)}. (1)
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The elements of M(f) are said to interpolate f relative to . We are interested in
the problem

inf |If~ylhi= inf /X \f - yldp.

yeM(f) yeM(f)
Set
Puin() ={y" e MO IIF = y* Il S NIf —yll for ally € M(f)}.
By definition (1), M(f) is a closed convex subset of M. Thus if M(f) is not empty,
then there exists y* € Py(5)(f), which will be called a best approzimation to f from
M(f).

Firstly, if ¢ is constant, M(f) = M. We know that every finite dimensional
subspace of a normed linear space is proximinal, that is, for every f € C;(X), there
exists m* € Py (f) which is a best approximation to f from M in C1(X). So
Prps)(f) = Pu(f) # @. This is one of the classical problems of approximation
theory.

As a special case, @ is an identical operator, i.e.,

M(f)={me M| m< f}

was developed by Pinkus [5]. He called one-sided L!-approzimation. Park & Rhee [4]
has studied earlier the one-sided simultaneous L!-approximation problem, the ap-

proximating set depends on ¢-tuple (f1, fa,- -+, fe) is
M(flaer"', fl) = {mE M| m < fi;i= 1,2, Z}

The one-sided simultaneous L!-approximation problem was generalized to compact
sets [4].
Secondly, the approximating set

M(f) = {m € M| p(m) = o(f)}

where ¢ € (C1(X))*, was considered by Deutsch & Mabizela [2]. They said m* €
Pur(5)(f) is the best interpolator approzimation of f relative to ¢.

Our first question is “When is M(f) not empty?”

The result establishes conditions each of which is sufficient to the statement that
M(f) # @ for each f € C1(X).

2. BEST PARAMETRIC APPROXIMATION

Proposition 1. Let f € C1(X) and ¢ € (C1(X))*.
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(1) If v is increasing (that is, if 0 < u — v then ¢(v) < p(u)) and M contains
a strictly positive function, then M(f) # ©.

(2) If ¢ is linearly independent over M (i.e., ap(y) = 0 for all y € M implies
a=0), then M(f) # .

Proof. (1) Since M contains a strictly positive function, there exists mg € M such
that mg < f. So w(mop) < ¢(f). Hence mp € M(f) # @.

(2) Since ¢ is linearly independent over M, there exists m € M such that
@(m) # 0. Without loss of generality, we may assume that ¢(m) > 0 and ¢(f) > 0.
There exists a natural number N such that ¢(m) < N - p(f). So ¢(m/N) < o(f).
Hence m/N € M(f). a

Let
Xo={f € C1(X)| o(f) < 0}
and
My ={m € M| p(m) <0} = M(0) = XoN M.
Then X is a convex cone in C1(X), and Mj is a convex cone in M.
Define L : C1(X) — M by L(f) = ¢(f)mp where ¢(mg) = 1,mg € M. Then L
is a linear projection onto span(my).

Remark 2. (1) L is a bounded linear operator with ||L|| = ||mg]|. In fact,
ILll = sup [IL{)]
=1

= sup o (F)moll

1=

= sup fimoll l¢(f)]

1=

= [Imol| Sop lo(f)]

=1
= |lmoll - llll
= |lmofl.
(2) For any m € span(myg), L(m) = m.
(3) L is idempotent, that is,
L(L(f)) = L{(f)mo) = o(f)L(mo) = p(f)mo = L(f)
for any f € C1(X).
(4) L7Y(0) = {f - L(f)| f € C1(X)} C Xo.
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(5) C1(X) = Xo ® span(my).
Theorem 3. For any f € C1(X), M(f) = Mo+ L(f), and

Pris)(f) = Puo(f — L(£)) + L(f)-

Proof. For any f € C1(X),y € M(f) if and only if y € M and ¢(y) < ¢(f) if and
only ify € M and p(y— f) < ¢(0) = 0 if and only if y € M and ¢(y) — ¢(L(f)) <0
if and only if y € M and ¢(y — L(f)) < 0 if and only if y € My + L(f). And

Py 5)(f)
= Pryr(5)(f)
={z" + L(f)| =* € Mo, ||f = (=" + L(f)Ih < If — (& + L(F)| for all z € Mo}
= {z"| 2" € Mo, ||(f — L(f)) — =*|l1 < lI(f = L(f)) — =|| for all z € Mo} + L(f)
= Pug,o(f — L(f)) + L(f)
where y = ¢ + L(f) € My and y* = z* + L(f) € M,. O
Corollary 4. Suppose that M is a finite dimensional subspace of C1(X) and ¢
is linearly independent over M. Then the closed subset Py(y)(f) # @ for each

f € Ci(X). And Pupy)(f) is singleton for each f € C1(X) if and only if My is
Chebyshev.
Let
M; = {m € M]| p(m) = 0}.
Then M; is an (n — 1)-dimensional subspace in My where n = dimM (cf. Deutsch
and Mabizela [2]).

Theorem 5. For any f € C1(X),d(f, M(f)) =d(f,M'(f)) and

Pr()(f) = Pagpy(f)
where M'(f) = {m € M| ¢(m) = o(f)}.
Proof. For any f € C1(X),M'(f) C M(f). So d(f, M(f)) <d(f,M'(f)). We must
show that
d(f, M(f)) = d(f, M'(f)).
If mg € M(f) with d(f, mg) = d(f, M(f)) then mg € M'(f). In fact, for any € > 0,

there exist u and v in e-neighborhood of mg such that ¢(u) < ¢(f) and p(v) > ¢(f)
that s, @(mo) = ¢(f) So, d(f, M(f)) > d(f, M'(f)) and -

d(f, M'(f)) < d(f,mo) = d(f, M(f)) < d(f,M'(f))
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Hence mg € Py () (f)-
Conversely, if m' € Pap(5)(f) then m’ € M'(f) C M(f) and

d(f,m') = d(f, M'(f)) = d(f, M(f))-

Thus m' € Py(5)(f)- O

Corollary 6. Suppose that f € C1(X) with o(f) = 0. Then

Py (f) = Puy (f)-

Theorem 7. Let f € C1(X). Then the followings are equivalent:

(1) m € Pyp)(f)-

(2) m — L(£) € Pasg (), where f' = f ~ L(f).

(3) There ezist k extremal points f; €S (¢, (x))» where 1 <k <n, and k scalars
A; > 0 such that

k
S nfie Mgt
i=1

(4) 0 € co{(f*(m1),- - F*(mn=1))| f* is an extremal point of S(c,(x))+} where
{m1,---mnp_1} is any basis for M{.

Proof. For any f € C1(X),(1) & (2) by Theorem 3. And (2) & (3) & (4) by
Singer [6, Theorem 1.1, Chap. 2]. O
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