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THE EXISTENCE OF SOLUTIONS OF
PSEUDO-LAPLACIAN EQUATIONS

KwoNn Wook Kim

ABSTRACT. This paper gives the sufficient conditions for the existence of positive
solution of a quasilinear elliptic equation with homogeneous Dirichlet boundary
condition.

1. INTRODUCTION

In this paper, we consider a class of quasilinear elliptic problems of the form
—-Apu = f(z,u) inf, and u=0 ondQ (1)
where @ ¢ RY is a bounded domain with smooth boundary 8Q and
Apu = div(|VulP2Vu), 1< p < oo.

The problems of type (1) have been studied by many authors (cf. Diaz [5], Brézis
and Oswald (3], Huang (8], Kim {9, 10, 11]). Huang [8] has investigated the positive
solution of pseudo-Laplacian equation involving critical Sobolev exponents using
the concentration compactness of Lions [12, 13]. And the author has studied the
existence of multiple positive solutions (cf. [9]) and positive solutions (cf. [10]) for
pseudo-Laplacian equations with critical (Sobolev) exponents in f(z,u).

In this paper we investigate the existence of solutions under the conditions (P)
and (H1)-(H3) of f(z,u) given below. Since Apu is Laplacian equation for p = 2 (cf.
Brézis and Oswald {3]), we will extend to the more general case of pseudo-Laplacian
equations. However, since the pseudo-Laplacian equations are degenerated elliptic,
the solutions of such equations are generally only the weak solutions. Tolkdorf [14]
has shown that the bounded solutions of above equation belong to C**(2) for some
a (0 < a < 1) under a suitable growth condition of f and not always belong to
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C?(Q). Our proof of existence relies on a minimization technique used by many
authors (cf. Amann [1]; Benguria, Brézis and Lieb [2]; de Figueiredo and Gossez [4];
Fuéik and Kufner [7))

In this paper we give the sufficient conditions for the existence of the positive
solution of a pseudo-Laplacian equation with a homogeneous Dirichlet boundary
condition:

—Apu = f(x,u) in O
(P) vu>0, u#0 in Q
u=0 on 0%
where @ C RY is a bounded domain with smooth boundary, and the function
f(z,u) : Q% [0,00) — R satisfies the following conditions:

(H1) For almost all z € §, the function u +—— f(z,u) is continuous on [0, co) and
for each 6§ > 0, there is a constant Cs > 0 such that

f(z,u) > —CsuP~! for almost all z € @ and for all u € [0,4].
(H2) For each u > 0, the function z — f(z,u) belongs to L>°((2).
(H3) There is a constant C > 0 such that

f(z,u) < CwP "1 +1) for almost all z € © and for all u > 0,

wherelSp*SI—VI% ifl<p<N and1<p*<o ifp>N.

We introduce the measurable function

ap(z) = lirilﬁ)nf f—i}%—?

so that —oo < ap(z) < +00.

In Diaz and Saa [6], a solution of (P) was shown to exist at most one solution by
assuming (H1), (H2) and (H3) with p* = p.

Moreover, it is known (see Diaz and Saa [6, Theorem 2]) that, if a solution of (P)

exists and the function u — f(z,u)/uP~! is decreasing on (0, c0), then
A (—Apu — ag(z)|ulP2u) < 0 (2)
where \;(—Apu — a(z)|u[P~?u) denotes the first eigenvalue of
—Apu — a(z)|ulPu

with zero Dirichlet condition on 8. By the strong maximum principle (cf. Vazquez
[15]), we know that u is a positive solution in §2. In [6], the condition (H3) is assumed
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only for index p — 1. In the present paper, we shall generalize the growth condition
on f(z,u).
But in our case it is necessary to have an additional assumption to ensure the
existence of a solution. Let us assume that
T WA 3)
utoo up
uniformly for almost all z €  where F(z,u) = [’ f(z,t)dt, and A\1(—A,) denotes
the first eigenvalue of —Apu, and that
lim sup pF(z,u) < M(—=4p) (4)
utoo up
on a subset of {2 of positive measure.
From (H1), there is a constant C such that ag(z) > —C and from (3) and (4),
we may assume that there is a function a(z) € L*(Q) such that
tim sup 22 < o(z) < M(—a,) (5)
utoo uP
uniformly for almost all ¢ € €.
Then, under the above conditions, there exists a weak solution of (P). The fol-
lowing remark shows that there exist such a function f(z,u) satisfying the above
conditions (H1)-(H3).

Remark 1. If
f(z,u) = e7l=W "1 (6)

and

e [t [
0

Y4

:.];/u —|:L‘|8 ds
PJo

—1 uP" 2 uP 4
= T|uP 0( 2 :cup)’
plz| el |z(2el=!
then we have
F
im PE@ Y _ g < 3 (—a,).
utoo

Thus we can take the function f of type (6) satisfying both the condition (H3)
and the assumption (4). Then the function f also satisfy both conditions (H1) and
(H2).
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2. EXISTENCE THEOREM

To prove the main theorem (Theorem 3 below) we need the following lemma.

Lemma 2. Assume that the inequalities (4) and (5) hold. Then there is 6 > 0 such
that, for every u € W, (),

1 P Y4 P
ww =3 [ [1vuP -a@w] 25 [ vup.

Proof. It follows from Poincaré’s inequality that
1
P(u) > 5/ [IVulP = A (=Ap)uP] > 0.
Q

If 9(u) = 0, then [ |VulP = [ A(~Ap)uP and thus
1

0= = [ (u(~2,) - ale).

Since A1 (—Ap) > a(z) on a subset of  of positive measure, u = 0 on a subset of
of positive measure. By the unique continuation property, we obtain u = 0. Assume

now that the conclusion is false. Then there is a sequence (u,) in WO1 ?(Q) such that

/ |Vu,|P =1,
Q

where u, converge weakly to u (in notation, u, — u) in W(} P(Q), up — u in LP(Q)
and 0 < ¥(u,) — 0 as n — co. We obtain

liminf/ |Vunl”2/|Vu|p

/Q Vunf? — /ﬂ (@)

Hence 0 < #(u) < 0, ie,, ¥(u) = 0. Thus u = 0. But 1 = [, |[Vu,[P — 0 which
is impossible. O

and

Theorem 3. Under the conditions (H1), (H2) and (H3), with inequalities (2) and
(4), there ezists a weak solution u € WyP(Q2) N L=(Q) of (P).

Proof. We consider the functional E : Wul P(Q) = RU {00} defined by

E(u) = l/ |VulP - / F(z,u) forall ue WyP(Q),
PJa Q
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where F(z,u) = [ f(z,t)dt and f(z,u) is extended to be f(z,0) for u < 0. Note
that E(u) is well-defined, since

1 .
F(z,u) < C’(Elulp + |ul) for allz € Q and for all u € R.

To attain the infimum of E(u), we must prove the following properties (a) and (b),
and prove its infimum # 0 by checking the following property (c):

(a) E is coercive on Wy P(5),
(b) E is lower semicontinuous for the weak Wo1 P(Q) topology, and
(c) There is some ¢ € Wy (Q) such that E(¢) < 0.

We will prove (a). From the condition (H3) and the expression (5), there is a
function B(x) € L1(f2) such that

Fa,0) < (a(@) + M(-8,)9) % + A(o).

Thus

—pw) - [ 2L [ o)

p Q

26 [ 1vup - 22 [ [ pa)

Q Q

=5 [ [1vur - 2=2w) - [ ga)
o] w55
= [ 1vur - [ 5a)

Thus E(u) is coercive on Wy *(§2) under the norm ||u||wg,p(m = [ [q|VulP] VP This
proves (a).

We will prove (b). Let u, — u in Wol’p (©). By Sobolev’s imbedding theorem,
passing to a subsequence if necessary, we may suppose that u, — u in L?"(Q),
u,(z) = u(z) for almost all z € Q and |u,(z)| < h(z) for some h € LP"(2). Then it
follows from the condition (H3) that

|F(z,un(2))| < C(h(z)" + h(z)).
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Since the right side of the above inequality is in L'(Q2), we have, by Lebesgue dom-
inated convergence theorem,

lim QF(:z:,un)=/QF(:L',u).

n—o0

Thus
n—o0 n—oo

liminf E(u,) = liminf (/ ! [Vun|P — F(m,un))

n—oo

/qul” /qu)

= E(u).

> hmmf/ [V, [P — hm /F(m Un)

This proves (b).
We will prove (c). We fix any ¢ € W(} ?(Q) satisfying

[1vop— [ aw <o
Q2 [¢#0]

Such ¢ always exists by expression (1). We may always assume that ¢ > 0 and that
¢ € L°(Q). Otherwise, we replace ¢ by |¢| and truncate ¢. We note that

1
liminf &Y 5 Lo o
ul0 uP p

and thus

e Fleed) o
1 f———=> - for almost .
im inf === > p ao(m) (z) for almost all = € [¢ # 0]
On the other hand, we deduce from the condition (H1) that
F(.’B’ E¢) 2 _C¢p 2 _C.
ep
Therefore, by Fatou’s lemma, it follows

lim inf Fla.e) 1 / aod?
0 Jig#op EP P Jip#0]
liminf/ M > -1—/ ag

0 Ja € PJgro)

2 [iwap - [ T2

for € > 0 small enough. This proves (c).

Thus we have

Hence we obtain
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Using properties (a),(b) and (c) we see that
inf  E(u)
uEWo1 ?(Q)

is achieved by some u # 0. We may assume that u > 0. Otherwise we replace u by
ut and use the fact that F(z,u) < F(z,u"), from F(z,u) = f(z,0)u < 0 for u < 0.
Then we know that E(u) is of class C'. Thus there exists a weak solution u of (P).

If we knew in addition that u € L*°(2), we would conclude that u is a solution of
(P). To show that u € L*°(QQ), we introduce a truncated problem. We set, for each
integer k > 0,

f¥(z,u) = max{f(z,u), —kuP} ifu>0

fk(:c,u)=fk(w,0)=f(a:,0) fu<go
and .
af(z) = lim nf f Ji’lu)-

Now, conditions (H1), (H2) and (H3) hold for f*(z,u). Since f < f* and ap(z) <
a’é(x), :
A (—Apu — af(2)[ulP~2u) < Aj(—Apu — ag(z)|ufP~2u) < 0
holds. From this, the assumption (2) holds for af(z). Moreover, the assumption (4)
holds for f¥(z,u) provided that k is large enough. Set

Euw) = [ (vuP - [ )

for all u € Wy™P(R). It follows from the previous argument that

inf  E(u)
wEWP(Q)

is achieved by some uj. Moreover, u;, satisfies
—Apug, = f¥(z,ug) inQ
up >0, up Z0 in Q
up =0 on Of).

Then there exist constants Dy, C}, such that
~Di(JulP +1) < fk(z,u) < C’k(|ulp"1 +1).

Therefore Ej(u) is of class C! and by a standard bootstrap argument, uj € L®(Q).
Set v = min{u, u;}. We claim that

E(v) < E(u).
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This shows that u € L*°(2). Indeed, we have

> [ o - [ Few < 1wer— [ P

for all ¢ € Wol’p(Q). Choosing ¢ = max{u,ux}, we obtain

1 1
—/ |Vuk|p—/ Fk(a:,uk)+—/ |Vuk|”—/ F*(z, w)
D Jlug>u] (ug>u] D Juk<u] [ur<u]

1
< —/ |Vuk|p—/ Fk(x,uk)+1/ |vu|P—/ F*(z,u).
P Jup>u] [ug>u] P Jlup<u) [ur<u]

Thus we find

1/ |Vuk|p—/ F*(z,u) < 1/ |V_u|”—/ F*(z,u).
P J{up<u] [ug<u] P Jlug<u] [ug<u]

On the other hand, we have

E(w) — E(u) = /

» ]{1—1) Vel - 2 (VP - Fz,u) +F<:c,u)}
up <u

< / F¥(z,uz) — F¥(z,u) - F(z,u) + F(z,u)
[ur <ul
_ o8 e |
—w‘/[“k<u] [/uk flz,t) — fH(z,t) [ dt <0
Thus E(v) < E(u).

From this, we know v = u, u < ug. Therefore u € L*(). O
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