THE EXISTENCE OF SOLUTIONS OF PSEUDO-LAPLACIAN EQUATIONS

KWON WOOK KIM

ABSTRACT. This paper gives the sufficient conditions for the existence of positive solution of a quasilinear elliptic equation with homogeneous Dirichlet boundary condition.

1. Introduction

In this paper, we consider a class of quasilinear elliptic problems of the form

$$-\Delta_p u = f(x, u) \quad \text{in } \Omega, \quad \text{and} \quad u = 0 \quad \text{on } \partial\Omega$$
 (1)

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial \Omega$ and

$$\Delta_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u), \quad 1$$

The problems of type (1) have been studied by many authors (cf. Díaz [5], Brézis and Oswald [3], Huang [8], Kim [9, 10, 11]). Huang [8] has investigated the positive solution of pseudo-Laplacian equation involving critical Sobolev exponents using the concentration compactness of Lions [12, 13]. And the author has studied the existence of multiple positive solutions (cf. [9]) and positive solutions (cf. [10]) for pseudo-Laplacian equations with critical (Sobolev) exponents in f(x, u).

In this paper we investigate the existence of solutions under the conditions (P) and (H1)–(H3) of f(x,u) given below. Since $\Delta_p u$ is Laplacian equation for p=2 (cf. Brézis and Oswald [3]), we will extend to the more general case of pseudo-Laplacian equations. However, since the pseudo-Laplacian equations are degenerated elliptic, the solutions of such equations are generally only the weak solutions. Tolkdorf [14] has shown that the bounded solutions of above equation belong to $C^{1,\alpha}(\overline{\Omega})$ for some α (0 < α < 1) under a suitable growth condition of f and not always belong to

Received by the editors February 1, 2001, and in revised form April 18, 2001.

²⁰⁰⁰ Mathematics Subject Classification. 35J60.

Key words and phrases. pseudo-Laplacian equation, weak solution.

This work was supported by "Non Directed Research Fund" of the Sunchon National University.

 $C^2(\Omega)$. Our proof of existence relies on a minimization technique used by many authors (cf. Amann [1]; Benguria, Brézis and Lieb [2]; de Figueiredo and Gossez [4]; Fučík and Kufner [7])

In this paper we give the sufficient conditions for the existence of the positive solution of a pseudo-Laplacian equation with a homogeneous Dirichlet boundary condition:

(P)
$$\begin{cases} -\Delta_p u = f(x, u) & \text{in } \Omega \\ u \ge 0, \quad u \ne 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary, and the function $f(x,u): \Omega \times [0,\infty) \to \mathbb{R}$ satisfies the following conditions:

(H1) For almost all $x \in \Omega$, the function $u \mapsto f(x, u)$ is continuous on $[0, \infty)$ and for each $\delta > 0$, there is a constant $C_{\delta} \geq 0$ such that

$$f(x,u) \ge -C_{\delta}u^{p-1}$$
 for almost all $x \in \Omega$ and for all $u \in [0,\delta]$.

- (H2) For each $u \geq 0$, the function $x \mapsto f(x, u)$ belongs to $L^{\infty}(\Omega)$.
- (H3) There is a constant C > 0 such that

$$f(x,u) < C(u^{p^*-1}+1)$$
 for almost all $x \in \Omega$ and for all $u \ge 0$,

where
$$1 \le p^* \le \frac{Np}{N-p}$$
 if $1 and $1 \le p^* < \infty$ if $p \ge N$.$

We introduce the measurable function

$$a_0(x) = \liminf_{u \downarrow 0} \frac{f(x,u)}{u^{p-1}}$$

so that $-\infty < a_0(x) \le +\infty$.

In Díaz and Saa [6], a solution of (P) was shown to exist at most one solution by assuming (H1), (H2) and (H3) with $p^* = p$.

Moreover, it is known (see Díaz and Saa [6, Theorem 2]) that, if a solution of (P) exists and the function $u \mapsto f(x,u)/u^{p-1}$ is decreasing on $(0,\infty)$, then

$$\lambda_1(-\Delta_p u - a_0(x)|u|^{p-2}u) < 0 (2)$$

where $\lambda_1(-\Delta_p u - a(x)|u|^{p-2}u)$ denotes the first eigenvalue of

$$-\Delta_p u - a(x)|u|^{p-2}u$$

with zero Dirichlet condition on $\partial\Omega$. By the strong maximum principle (cf. Vázquez [15]), we know that u is a positive solution in Ω . In [6], the condition (H3) is assumed

only for index p-1. In the present paper, we shall generalize the growth condition on f(x, u).

But in our case it is necessary to have an additional assumption to ensure the existence of a solution. Let us assume that

$$\limsup_{u \uparrow \infty} \frac{pF(x, u)}{u^p} \le \lambda_1(-\Delta_p) \tag{3}$$

uniformly for almost all $x \in \Omega$ where $F(x,u) = \int_0^u f(x,t)dt$, and $\lambda_1(-\Delta_p)$ denotes the first eigenvalue of $-\Delta_p u$, and that

$$\limsup_{u \uparrow \infty} \frac{pF(x, u)}{u^p} < \lambda_1(-\Delta_p) \tag{4}$$

on a subset of Ω of positive measure.

From (H1), there is a constant C such that $a_0(x) \geq -C$ and from (3) and (4), we may assume that there is a function $\alpha(x) \in L^{\infty}(\Omega)$ such that

$$\limsup_{u \uparrow \infty} \frac{pF(x, u)}{u^p} \le \alpha(x) \le \lambda_1(-\Delta_p) \tag{5}$$

uniformly for almost all $x \in \Omega$.

Then, under the above conditions, there exists a weak solution of (P). The following remark shows that there exist such a function f(x, u) satisfying the above conditions (H1)-(H3).

Remark 1. If

$$f(x,u) = e^{-|x|u^p} u^{p^*-1}$$
(6)

and

$$\begin{split} F(x,u) &= \int_0^u f(x,t) dt = \int_0^u e^{-|x|t^p} t^{p^*-1} dt \\ &= \frac{1}{p} \int_0^{u^p} e^{-|x|s} s^{\frac{p^*}{p}-1} ds \\ &= \frac{-1}{p|x|} \frac{u^{p^*-2}}{e^{|x|u^p}} + O(\frac{u^{p^*-4}}{|x|^2 e^{|x|u^p}}), \end{split}$$

then we have

$$\lim_{u\uparrow\infty}\frac{pF(x,u)}{u^p}=0\leq \lambda_1(-\Delta_p).$$

Thus we can take the function f of type (6) satisfying both the condition (H3) and the assumption (4). Then the function f also satisfy both conditions (H1) and (H2).

2. Existence Theorem

To prove the main theorem (Theorem 3 below) we need the following lemma.

Lemma 2. Assume that the inequalities (4) and (5) hold. Then there is $\delta > 0$ such that, for every $u \in W_0^{1,p}(\Omega)$,

$$\psi(u) = rac{1}{p} \int_{\Omega} \left[\left|
abla u
ight|^p - lpha(x) u^p
ight] \geq \delta \int_{\Omega} \left|
abla u
ight|^p.$$

Proof. It follows from Poincaré's inequality that

$$\psi(u) \geq rac{1}{p} \int_{\Omega} \left[\left|
abla u
ight|^p - \lambda_1 (-\Delta_p) u^p
ight] \geq 0.$$

If $\psi(u) = 0$, then $\int |\nabla u|^p = \int \lambda_1(-\Delta_p)u^p$ and thus

$$0=\psi(u)=rac{1}{p}\int_{\Omega}(\lambda_1(-\Delta_p)-lpha(x))u^p.$$

Since $\lambda_1(-\Delta_p) > \alpha(x)$ on a subset of Ω of positive measure, u = 0 on a subset of Ω of positive measure. By the unique continuation property, we obtain $u \equiv 0$. Assume now that the conclusion is false. Then there is a sequence (u_n) in $W_0^{1,p}(\Omega)$ such that

$$\int_{\Omega} |\nabla u_n|^p = 1,$$

where u_n converge weakly to u (in notation, $u_n \to u$) in $W_0^{1,p}(\Omega)$, $u_n \to u$ in $L^p(\Omega)$ and $0 \le \psi(u_n) \to 0$ as $n \to \infty$. We obtain

$$\liminf_{n\to\infty} \int_{\Omega} |\nabla u_n|^p \ge \int_{\Omega} |\nabla u|^p$$

and

$$\int_{\Omega} |\nabla u_n|^p \to \int_{\Omega} \alpha(x) u^p.$$

Hence $0 \le \psi(u) \le 0$, i.e., $\psi(u) = 0$. Thus $u \equiv 0$. But $1 = \int_{\Omega} |\nabla u_n|^p \to 0$ which is impossible.

Theorem 3. Under the conditions (H1), (H2) and (H3), with inequalities (2) and (4), there exists a weak solution $u \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ of (P).

Proof. We consider the functional $E:W_0^{1,p}(\Omega)\to\mathbb{R}\cup\{\infty\}$ defined by

$$E(u) = rac{1}{p} \int_{\Omega} |
abla u|^p - \int_{\Omega} F(x,u) \quad ext{for all} \ \ u \in W^{1,p}_0(\Omega),$$

where $F(x, u) = \int_0^u f(x, t) dt$ and f(x, u) is extended to be f(x, 0) for $u \leq 0$. Note that E(u) is well-defined, since

$$F(x,u) \leq C(rac{1}{p^*}|u|^{p^*}+|u|) \; ext{ for all } x \in \Omega \; ext{ and for all } u \in \mathbb{R}.$$

To attain the infimum of E(u), we must prove the following properties (a) and (b), and prove its infimum $\not\equiv 0$ by checking the following property (c):

- (a) E is coercive on $W_0^{1,p}(\Omega)$,
- (b) E is lower semicontinuous for the weak $W_0^{1,p}(\Omega)$ topology, and
- (c) There is some $\phi \in W_0^{1,p}(\Omega)$ such that $E(\phi) < 0$.

We will prove (a). From the condition (H3) and the expression (5), there is a function $\beta(x) \in L^1(\Omega)$ such that

$$F(x,u) \leq (\alpha(x) + \lambda_1(-\Delta_p)\delta)\frac{u^p}{p} + \beta(x).$$

Thus

$$E(u) = \int_{\Omega} \left[\frac{1}{p} |\nabla u|^p - F(x, u) \right]$$

$$\geq \int_{\Omega} \left[\frac{1}{p} |\nabla u|^p - \alpha(x) \frac{u^p}{p} - \frac{\lambda_1(-\Delta_p)\delta}{p} u^p - \beta(x) \right]$$

$$= \psi(u) - \int_{\Omega} \frac{\lambda_1(-\Delta_p)\delta}{p} u^p - \int_{\Omega} \beta(x)$$

$$\geq \delta \int_{\Omega} |\nabla u|^p - \frac{\lambda_1(-\Delta_p)\delta}{p} \int_{\Omega} u^p - \int_{\Omega} \beta(x)$$

$$= \delta \int_{\Omega} \left[|\nabla u|^p - \frac{\lambda_1(-\Delta_p)}{p} u^p \right] - \int_{\Omega} \beta(x)$$

$$\geq \delta \int_{\Omega} \left[|\nabla u|^p - \frac{|\nabla u|^p}{p} \right] - \int_{\Omega} \beta(x)$$

$$= \frac{\delta}{p} \int_{\Omega} |\nabla u|^p - \int_{\Omega} \beta(x).$$

Thus E(u) is coercive on $W_0^{1,p}(\Omega)$ under the norm $||u||_{W_0^{1,p}(\Omega)} = \left[\int_{\Omega} |\nabla u|^p\right]^{1/p}$. This proves (a).

We will prove (b). Let $u_n \to u$ in $W_0^{1,p}(\Omega)$. By Sobolev's imbedding theorem, passing to a subsequence if necessary, we may suppose that $u_n \to u$ in $L^{p^*}(\Omega)$, $u_n(x) \to u(x)$ for almost all $x \in \Omega$ and $|u_n(x)| \leq h(x)$ for some $h \in L^{p^*}(\Omega)$. Then it follows from the condition (H3) that

$$|F(x, u_n(x))| \le C(h(x)^{p^*} + h(x)).$$

Since the right side of the above inequality is in $L^1(\Omega)$, we have, by Lebesgue dominated convergence theorem,

$$\lim_{n o\infty}\int_\Omega F(x,u_n)=\int_\Omega F(x,u).$$

Thus

$$\liminf_{n \to \infty} E(u_n) = \liminf_{n \to \infty} \left(\int_{\Omega} \frac{1}{p} |\nabla u_n|^p - F(x, u_n) \right)
\geq \liminf_{n \to \infty} \int_{\Omega} \frac{1}{p} |\nabla u_n|^p - \lim_{n \to \infty} \int_{\Omega} F(x, u_n)
\geq \frac{1}{p} \int_{\Omega} |\nabla u|^p - \int_{\Omega} F(x, u)
= E(u).$$

This proves (b).

We will prove (c). We fix any $\phi \in W_0^{1,p}(\Omega)$ satisfying

$$\int_{\Omega} |\nabla \phi|^p - \int_{[\phi \neq 0]} a_0 \phi^p < 0.$$

Such ϕ always exists by expression (1). We may always assume that $\phi > 0$ and that $\phi \in L^{\infty}(\Omega)$. Otherwise, we replace ϕ by $|\phi|$ and truncate ϕ . We note that

$$\liminf_{u\downarrow 0}rac{F(x,u)}{u^p}\geq rac{1}{p}\,a_0(x)$$

and thus

$$\liminf_{\varepsilon \downarrow 0} \frac{F(x,\varepsilon \phi)}{\varepsilon^p} \geq \frac{1}{p} \, a_0(x) \phi^p(x) \ \ \text{for almost all} \ \ x \in [\phi \neq 0].$$

On the other hand, we deduce from the condition (H1) that

$$\frac{F(x,\varepsilon\phi)}{\varepsilon^p} \ge -C\phi^p \ge -C.$$

Therefore, by Fatou's lemma, it follows

$$\liminf_{\varepsilon \downarrow 0} \int_{[\phi \neq 0]} \frac{F(x, \varepsilon \phi)}{\varepsilon^p} \ge \frac{1}{p} \int_{[\phi \neq 0]} a_0 \phi^p.$$

Thus we have

$$\liminf_{\varepsilon \downarrow 0} \int_{\Omega} \frac{F(x, \varepsilon \phi)}{\varepsilon^p} \geq \frac{1}{p} \int_{[\phi \neq 0]} a_0 \phi^p.$$

Hence we obtain

$$\frac{1}{p} \int_{\Omega} |\nabla \phi|^p - \int_{\Omega} \frac{F(x, \varepsilon \phi)}{\varepsilon^p} < 0$$

for $\varepsilon > 0$ small enough. This proves (c).

Using properties (a),(b) and (c) we see that

$$\inf_{u\in W^{1,p}_0(\Omega)}\!\!E(u)$$

is achieved by some $u \not\equiv 0$. We may assume that $u \geq 0$. Otherwise we replace u by u^+ and use the fact that $F(x,u) \leq F(x,u^+)$, from $F(x,u) = f(x,0)u \leq 0$ for $u \leq 0$. Then we know that E(u) is of class C^1 . Thus there exists a weak solution u of (P).

If we knew in addition that $u \in L^{\infty}(\Omega)$, we would conclude that u is a solution of (P). To show that $u \in L^{\infty}(\Omega)$, we introduce a truncated problem. We set, for each integer k > 0,

$$\begin{cases} f^k(x,u) = \max\{f(x,u), -ku^p\} & \text{if } u \ge 0 \\ f^k(x,u) = f^k(x,0) = f(x,0) & \text{if } u \le 0 \end{cases}$$

and

$$a_0^k(x) = \liminf_{u \downarrow 0} \frac{f^k(x,u)}{u^{p-1}}.$$

Now, conditions (H1), (H2) and (H3) hold for $f^k(x, u)$. Since $f \leq f^k$ and $a_0(x) \leq a_0^k(x)$,

$$\lambda_1(-\Delta_p u - a_0^k(x)|u|^{p-2}u) \le \lambda_1(-\Delta_p u - a_0(x)|u|^{p-2}u) < 0$$

holds. From this, the assumption (2) holds for $a_0^k(x)$. Moreover, the assumption (4) holds for $f^k(x, u)$ provided that k is large enough. Set

$$E_k(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p - \int_{\Omega} F^k(x, u)$$

for all $u \in W_0^{1,p}(\Omega)$. It follows from the previous argument that

$$\inf_{u\in W_0^{1,p}(\Omega)}\!\!E_k(u)$$

is achieved by some u_k . Moreover, u_k satisfies

$$\begin{cases} -\Delta_p u_k = f^k(x, u_k) & \text{in } \Omega \\ u_k \ge 0, u_k \not\equiv 0 & \text{in } \Omega \\ u_k = 0 & \text{on } \partial \Omega \end{cases}$$

Then there exist constants D_k, C_k such that

$$-D_k(|u|^p+1) \le f^k(x,u) \le C_k(|u|^{p^*-1}+1).$$

Therefore $E_k(u)$ is of class C^1 and by a standard bootstrap argument, $u_k \in L^{\infty}(\Omega)$. Set $v = \min\{u, u_k\}$. We claim that

$$E(v) \leq E(u)$$
.

This shows that $u \in L^{\infty}(\Omega)$. Indeed, we have

$$rac{1}{p}\int_{\Omega}|
abla u_k|^p-\int_{\Omega}F^k(x,u_k)\leq rac{1}{p}\int_{\Omega}|
abla \phi|^p-\int_{\Omega}F^k(x,\phi)$$

for all $\phi \in W_0^{1,p}(\Omega)$. Choosing $\phi = \max\{u, u_k\}$, we obtain

$$\begin{split} \frac{1}{p} \int_{[u_k \geq u]} |\nabla u_k|^p - \int_{[u_k \geq u]} F^k(x, u_k) + \frac{1}{p} \int_{[u_k < u]} |\nabla u_k|^p - \int_{[u_k < u]} F^k(x, u_k) \\ \leq \frac{1}{p} \int_{[u_k \geq u]} |\nabla u_k|^p - \int_{[u_k \geq u]} F^k(x, u_k) + \frac{1}{p} \int_{[u_k < u]} |\nabla u|^p - \int_{[u_k < u]} F^k(x, u). \end{split}$$

Thus we find

$$\frac{1}{p} \int_{[u_k < u]} |\nabla u_k|^p - \int_{[u_k < u]} F^k(x, u_k) \le \frac{1}{p} \int_{[u_k < u]} |\nabla u|^p - \int_{[u_k < u]} F^k(x, u).$$

On the other hand, we have

$$E(v) - E(u) = \int_{[u_k < u]} \left\{ \frac{1}{p} |\nabla u_k|^p - \frac{1}{p} |\nabla u|^p - F(x, u_k) + F(x, u) \right\}$$

$$\leq \int_{[u_k < u]} F^k(x, u_k) - F^k(x, u) - F(x, u_k) + F(x, u)$$

$$= \int_{[u_k < u]} \left[\int_{u_k}^{u} f(x, t) - f^k(x, t) \right] dt \leq 0.$$

Thus $E(v) \leq E(u)$.

From this, we know v = u, $u \le u_k$. Therefore $u \in L^{\infty}(\Omega)$.

REFERENCES

- 1. H. Amann: On the existence of positive solutions of nonlinear elliptic boundary value problems. *Indiana Univ. Math. J.* 21 (1971), 125–146. MR 45#5558
- 2. R. Benguria, H. Brézis, and E. Lieb: The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Comm. Math. Phys. 79 (1981), no. 2, 167–180. MR 83m:81114
- 3. H. Brézis and L. Oswald: Remarks on sublinear elliptic equations. *Nonlinear Anal.* 10 (1986), no. 1, 55-64. MR 87c:35057
- 4. D. de Figueiredo and J. Gossez: Nonresonance below the first eigenvalue for a semilinear elliptic problem. *Math. Ann.* **281** (1988), no. 4, 589–610. MR **90b:**35083
- J. I. Díaz: Nonlinear partial differential equations and free boundaries, Vol. 1. Elliptic equations. Reseach Notes in Mathematics, 106. Pitman, Boston, Mass.-London, 1985. MR 88d:35058

- 6. Jesús Ildefonso Díaz and José Evaristo Saa: Existence et unicité de solutions positives pour certains équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 12, 521-524. MR 89e:35051
- S. Fučík and A. Kufner: Nonlinear Differential Equations. Studies in Applied Mechanics,
 Elsevier Scientific Publishing Co., Amsterdam-New York, 1980. MR 81e:35001
- 8. Yin Xi Huang: Positive solutions of centain elliptic equations involving critical Sobolev exponents. *Nonlinear Anal.* **33** (1998), 617–636. MR **2000a**:35074
- Kwon Wook Kim: Multiple positive solutions for Pseudo-Laplacian equation with critical exponents. J. Korean Soc. Math. Ed. Ser B Pure. Appl. Math. 5 (1998), 33-44.
 MR 99k:35050
- 10. _____: Positive solutions for Pseudo-Laplacian equations with critical Sobolev exponents. Commun. Korean Math. Soc. 14 (1999), no. 1, 81-97. MR 2000c:35064
- 11. _____: The existence of solution of semilinear elliptic equation. Commun. Korean Math. Soc. 14 (1999), no. 2, 301-310. MR 2000d:35071
- P.-L. Lions: The concentration-compactness principle in the calculus of variations-The locally compact case, Part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire 1. (1984), no. 2, 109-145. MR 87e:49035a
- 13. _____: The concentration-compactness principle in the calculus of variations-The locally compact case, Part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223-283. MR 87e:49035b
- 14. P. Tolksdorf: Regularity for a more general class of quasilinear ellitic equations. J. Differential Equations 51 (1984), no. 1, 126-150. MR 85g:35047
- J. Vázquez: A strong maximum principle for some quasilinear elliptic equations.
 Appl. Math. Optim. 12 (1984), no. 3, 191-202. MR 86m:35018

Department of Mathematics Education, Sunchon University, Sunchon, Jeonnam 540-742, Korea

E-mail address: kkwook@sunchon.sunchon.ac.kr