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ABSTRACT

Gouvela and Pires (European Journal of Operations Research 112 (1999) 134-146) have proposed
four extended [ormulations having precedence variables as extra variables and characterized the
projections ol three of the four {formulations into the natural variable space. In Gouvela and Pires
(Discrete Applied Mathematics 112 (2001)), they also have introduced some other extended for—
mulations with the same extra variables and conjectured that the projection of one of the proposed
formulations is equivalent to the one proposed by Dantzig, Fulkerson, and Johnson (Operations Re—
search 2 (1954) 393-410). In this paper, we provide a unifving framework bascd on which we give
alternative proofs on the projections of three extended formulations and new proofs on those of two
formulations appeared in Gouveia and Pires (1999, 2001).

1. INTRODUCTION

Given a loop-free directed graph G = (V, A) where V= {1, .., n} and costs ¢, for
each arc (i,7) € A the asymmetric traveling salesman problem (ATSP) is to find a
least cost Hamiltonian cycle (tour) contained in the graph. A number of formula-
tions for the ATSP have been proposed and they can be classified into the follow-
ing two types: A natural formulation and an extended formulation. A natural
formulation only contains arc variables that indicate whether or not to include
arcs in a tour while an extended formulation have extra variables other than arc
variables. Various different ATSP formulations, both natural and extended ones,

can be found in Langevin, Soumis, and Desrosiers [7] and Gouveia and Pires

* The research was conducted by the research fund of Dankook university in 2001.
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[4].

Recently, Gouvela and Pires [4, 5] have proposed a class of extended formula-
tions that contains precedence variables as extra variables. Precedence variables
are defined on each pair of nodes to indicate which node in the pair precedes the
other in the selected tour under the assumption that a tour starts from a prede-
termined node. Gouveia and Pires [4] developed four extended formulations and
they characterized the projections of three of the four proposed formulations into
the space of natural variables, that is, arc variables. In Gouveia and Pires [3],
they also introduced several different extended formulations with precedence
variables and provided a conjecture that the projection of one of the proposed
formulations is equivalent to the formulation introduced by Dantzig, Fulkerson,
and Johnson [2].

As is the case in integer and combinatorial optimization, the efficiency of an
algorithm for solving the ATSP is dependent on the formulation that the algo-
rithm is based on. Most ATSP algorithms need a lower bound on the value of the
objective function and the efficiency of the algorithm depends on how to obtain
the sharp lower bound in reasonable time. Therefore, an attempt to compare dif-
ferent formulations of the ATSP provides a valuable information to choose an
appropriate formulation. A useful method of comparing various alternative for-
mulations for the ATSP is to project out extra variables from extended formula-
tions so that the resulting formulations have the same set of variables. Such
method, called projection, has also been used in other researches to compare al-
ternative formulations of combinatorial optimization problems [1, 3, 8].

In this paper, we develop a unifying framework that helps to characterize the
projections of extended formulations with precedence variables into the natural
variable space. Based on this framework we give alternative proofs on the projec-
tions of three extended formulations and newly characterize the projection of ano-
ther formulation in Gouveia and Pires [4]. We also prove that the conjecture in
Gouveia and Pires [5] is true. In Section 2, we provide the notation and introduce
the formulations proposed by Gouveia and Pires [4, 5]. The main theorems and
their proofs are given in Section 3. Finally, Section 4 provides the concluding re-

marks.
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2. NOTATION AND FORMULATIONS

We assume that a given graph is complete. For a subset S of nodes, we let §7(S) =
{G,j)eAlieSandje V\S}, 6(S)={@G,j) e Al ie V\Sandj e S}, and E(S)
={t, /) € Al i, € 8}, We also let 6(S) = §(8) w 6 (8). For simplicity, we let 57 ()
=57 {ih), 5 @) =56 {i}), and 5 () = §({ i}) for every node 7. If x is defined on an
arc set A, then we denote X ,.rx, for Fc Aby x (F). Let V,= V\{l} and 4, =
ANS (1). For a subset V' of V, let G{V'] denote the subgraph of G induced by the
set of nodes V. For each arc (4, /) € A, let x;= 1if arc (t, j) is included in a select-
ed tour; x;= 0 otherwise. We assume that node 1 is the root node where any tour
starts and finishes. Precedence variables v, for any pair of distinct nodes i,j € V,
are defined as follows: v, = 1 if node i is visited prior to node ; in the optimal tour;
v; = 0 otherwise.

Gouveia and Pires [4] have introduced the following extended formulation
with precedence variables for the ATSP.

min Y c;%;

(i.))=4
st x(5T@)=1 eV W
*(87() =1 ieV @
Xij +Up SUp +1 peVi;i,jeViN{p} (32)
Xp Uy peV;ieV,\{p} (4)
Xip *Upi <1 peV,; eV \{p} (5)
0<x; <1 G, )eA ®)
0<v,; =1 p,teV; 7
Xy, Up; integer (l,/)e A; pieV,. (8)

They also have shown that constraints (3a) can be lifted to each class of the fol-
lowing two constraints.

Xij + X +Up; SUp +1 peVii,jeViN{p} (3b)

Xy + X g+ Xy H U, S0+ peViiieViN{p} (3¢)

In Gouveia and Pires [5], they have proposed generalizations of (3b) and (3¢),
one of which is the following generalized version of constraints (3b).

x(E(S)) +vy <v,+1S1-1 peV;Sc V) \{p} suchthat |[S|22 and i, jeS (3d)
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Note that (3d) reduces to (3b) when | S|= 2.

Five different extended formulations for the ATSP can be constructed de-
pending on which constraints are selected among (3a) - (3d). Consider the follow-
ing five polytopes:

PQ1={(x,v) | (x, v) satisfies (1), (2), Ba), (4) - (7) };
PQ2={(x,v) | (x,v) satisfies (1), (2), (3b), @) - (T) };
PQ3={(x,v) | (x, v)satisfies (1), (2), (3c), 4) - () };
PQ4={(x,v) | (x v)satisfies (1), (), (3d), 4) - (M) }.
PQ5={(x,v) | (x,v)satisfies (1), (2), (3b), (3c), (4) - (7) }.

Let P1, P2, P3, P4, and P5 be the projections of PQ1, PQ2, PQ3, PQ4, and PQ5
into the x-space, respectively. To compare the above five extended formulations
with the existing natural formulations, Gouveia and Pires [4, 5] have considered
P1 - P5. To describe P1 - P5, we need the following constraints. For convenience,
we will refer to a directed cycle as not only a set of arcs but a set of nodes that are
included in the cycle.

> lC -1 for any directed cycle Cin G [V,]; (9a)

;] =
(i, HeC

> ox+ > x; <|C|~1for any directed cycle Cin G[Vi]andp €C;  (9b)
(i, ))eC (. ))eCizp;j=p

Z X+ Z(xip +x,;)=|C| foranyp e Viand directed cycle Cin G[V,\{p}];(9c)
(i,/)eC ieC

Xy+xy <l for any (,7) € Ay; (9d)
x(E@SH=|8|-1 for any subset & = V| such that 2< [ 8| < n - 2; (9e)

> i) <ICl for any p e V, and directed cycle Cin G{V,\{p}].(95)
G.))eC

where f;(x) is either x; + x;or x;+x, +x, .

It ig not difficult to know that any feasible solution to the ATSP satisfies all
the above inequalities. Notice that constraints (9e) dominate (9a) - (9d). Strictly
speaking, to make the statement correct we have to include (9e) for |S|=mn - 1.
However, such constraint can be derived from (1) and (2). Notice that (9f) includes
(9c) as its specific case, since if f;; (x) is x; + x;, + x, for all (¢, 7) € C, the resulting
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constraint (9f) is nothing but (9¢). On the other hand, if f;; (x) i1s x; + x;, for all ¢, j )
e C, the resulting constraint (9f) is dominated by constraints (9d) since this speci-
fic version of (9f) can be obtained by adding (9d) one for each arc in a cycle.

Interestingly, constraints (9f) include well-known D3 inequalities. Consider a
directed cycle C in G [V,\{p}] for some p € Vywith |Cl=2, say C ={C, j), G, i)},
then the corresponding inequality (9f) has the following form:

(xij +xi[) +xpj)+(xﬂ +xU) <2,

The above inequality is a D3 inequality and can be obtained by lifting a 3-cycle
inequality (9a) corresponding the cycle {(Z, p), (p, j), (j, )}. Grotchel and Padberg
[6] have proposed D3 inequalities as a specific case of more general f)k (or Dk)
inequalities.

Consider the following five polytopes:
QL ={x | x satisfies (1), (2), (6), (92) };
Q2 ={x | xsatisfies (1), (2), (6), (9b), (9d) };
Q8 ={x | xsatisfies (1), (2), (6), (9¢), (9d) };
Q4 ={x | xsatisfies (1), (2), (6), (9e) };
Q5 ={x | xsatisfies (1), (2), (6), (9b), (9d), (9D }.

Adding the integrality constraints for the x variables to each of Q1 - Q5, we can
construct five natural formulations for the ATSP. Gouveia and Pires [4] presented
the first three formulations and Dantzig, Fulkerson, and Johnson [2] did Q4.

In the next section, we will prove the following theorem.

Theorem 1. P1=@Q1, P2=2, P3=@3, P4 =4, and P5=@5.

Gouveia and Pires [4, 5] have proved the first three relations and conjectured that
P4 = @4. They have also shown that any feasible x € P5 satisfies D3 inequalities
and neither of P4 and P5 contains the other. This observation is consistent with
our characterization of P5, i.e., @5. Moreover, from @5, we can know that P5 is
contained in P4 with additional D3 inequalities. Note that (9f) is weaker than
(9e) except when | C|= 2. Also note that (9f) with | C|= 2 other than D3 inequali-
ties are included in (9e).
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3. PROOF OF THEOREM 1

In this section, we prove Theorem 1. It is not difficult to know that we can obtain
each of (9a) - (9f) if we select an appropriate set of inequalities among (3a) - (3d),
(4), and (5), and aggregate them to eliminate v-variables. Gouveia and Pires [4, 5]
have shown how to select inequalities among (3a) - (3d), (4), and (5) to derive (9a)
- (9d). As for (9f), for any p € V,and directed cycle C in G [V, \{p}], if we select
either (3b) or (3¢) corresponding to each arc in the cycle and add all the selected
constraints, then we can have (9f) for p and C.

However, it is not trivial to show the opposite direction, that is, to show that
the constraints in @1 — @5 are sufficient to describe P1 — P35, respectively. To
prove that direction, we have to show that for any feasible x € @t, there always
exist variables v, for each i € V,\{p} and p € V| such that (x, v) satisfies the sys-
tem of inequalities in P@t, for t = 1, ..., 5. When proving that @1 c Pl and @2 < P
2, Gouveia and Pires [4] used Farkas’ Lemma in a general way to check whether
there exists such vector v. Here we develop a more simple condition for the exis-
tence of a vector v such that (x, v) € PQt, for t =1, ..., 5. This condition is based on
the structural properties of (3a) - (3d), (4), and (5) such that the projected ine-
qualities (9a) - (9f) are obtained by combining an appropriate set of inequali-ties
(3a) - (3d), (4), and (5) in a cycle fashion. The following lemma provides a unifying
framework that produces the proofs for @t = Ptfort =1, ..., 5. Given a graph G =
(V, A) and arc lengths d;, for each (7, j) € A, we define the length of a directed path
(cycle) as the sum of the lengths of arcs in the path (cycle). Recall that V, = V \{1}
and A, = A\NS ().

Lemma 2. For a subgraph G,= (V), A)) of G with an arc length d; for each (i, )
A, , suppose that for some p e V,, the following two conditions hold:

(C1) No directed cycle in G[V,\{p}] has positive length;
(C2) No directed cycle in G[V]] has length greater than 1.

Then there exist variables v, for each i € V\{p} that satisfy the following system

of inequalities.
vpj_vpi Zd’.l L,]EVl\{p} (10)
Upi 2 dp te V, \{p} (11)



PROJECTIONS OF EXTENDED FORMULATIONS 7

i <1-dy, ieV, \{p} (12)

Proof. Suppose that arc lengths d; for each (i, j) e A, satisfy the conditions (C1)
and (C2). For each i € V)\{p} set v,;as the length of the longest path from p
to 1. Obviously, the resulting variables v, satisfy (11) by definition and (12)
by (C2). Now we show that the variables v,; also satisfy (10). Suppose that v,

Uy < d for some pair of nodes ¢, j € V,\{p}. Consider a longest path from p
to i whose length equals to v,,. If this path does not pass node j, we can con-
struct a path from p to j by connecting the longest path from p to ¢ and arc @,
7) whose length is greater than v,;, thereby contradicting the assumption on
U,- On the other hand, if the longest path from p to i passes node j, we can
construct a positive length cycle by connecting arc (z, 7) and a subpath from ;
to 1 of the longest path from p to i. It contradicts (C1). O

Notice that constraints (3a) - (3d) have the form of v,;— v,; > d;; assuming that d;; rep-
resents a formula of the x variables and that (4) and (5) take the form of (11) and (12),
respectively. So, Lemma 2 can be used to characterize the projections of extended
formulations having constraints that can be described as (10) - (12). Although we don’t
show it, the reverse of the statement in Lemma 2 also holds. Using the lemma, we
complete the proof of Theorem 1 by showing that Qt < Ptfort=1, ..., 5.

(Proof of Theorem 1)
The outline of our proof is as follows. For each t =1, 2, 3, 4, 5, we select x ¢ Qt
and set d; (p) for each p € V) and (i, j) € A, as a formula of the x variables such
thatforallt=1, ..., 5,d,;(p) =x, foreach: ¢ V,\{p}and d ,(p) =x, foreach i €
ViN{p} and that d ; (p) for each (z, j) € A)\é (p)isequalto-1+x;, -1+x,+x;,-1
+x,+x, +x, max{-1S] +1+x(E®)| § < V\\{p}suchthat | S| 22 andz,;
e S}, max{-1+x,;+x; -1+x;+x,+x, fori=1,2, 3, 4, 5, respectively. Notice
that for all t, (11) and (12) are nothing but (4) and (5), respectively and that (10)
for t =1(2, 3, 4, 5, respectively) corresponds to (3a) ( (8b), (3¢), (3d), both (3b) and
(3¢), respectively). Therefore, if we show that for all p € V,, the resulting lengths
d ; (o) satisfy the conditions (C1) and (C2), we would prove that (x, v) € PQt, for
eacht=1,2 3, 4, 5.

We first show that Q1 < P1. Assume that x € Q1 and d ;(p) is set as we de-
fined for ¢ = 1. Since d ;(p) < 0 for each (i, ;) € A,\8(p), the condition (C1) holds.
Consider any directed cycle C in G[V;] which passes node p. Then

> di(p)= 2 x;—(1C1-2)<1.

(i./)eC (i,))eC
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By (9a), the inequality holds, so the length of the directed cycle C is less than or
equal to 1.

To show that Q2 = P2, select x € Q2 and set d ; (p) as we defined for ¢ = 2. By
(9d), d;(p) < 0 for each (i, j) € A \6(p), so the condition (C1) holds. Each directed
cycle C with |C|= 2 in G[V,] that passes node p, satisfies the condition (C2) by
(9d). Consider any directed cycle C with |C|= 3 in G[V,] which passes node p.
Then

Ddi(p)= D x5+ Yaxy —(CI-2)<1.
(2, 1)eC G.n=C (i.j)eCii=p,j=p

The inequality holds by (9b).

We now show that Q3 < P3. Consider x € Q3 and d; (») as we defined for t = 3.
Consider any directed cycle Cin G[V,\Mp}]. Then

Zdlj(p> = 2 xij + Z(.’)Cip +x1)i)_ I C Iﬁ 0.
(i.))eC (i, )eC ieC

The inequality holds by (9¢), thereby the condition (C1) is satisfied. Next consider

a directed cycle Cin G [V,] which passes node p. Any directed cycle C with |C|=2
satisfies the condition (C2) by (9d), so we assume that [C|z 3. Let C = {(p, i,), iy,

ig)y ..oy (@1, (G D)}y and C' ={(y iy), ..., (... 1), @, i)} Note that |C']=]C]-1 and
p & C'.Then

Mdi(p)= Y xy+ Y, +ay)-x; ~(1C-2) <1
(1,/)eC (7,/)eC" teC’

The inequality holds since the summation of the first two terms next to equal sign
is less than or equal to | C'|(=|C|-1) by (9¢).

To show that Q4 < P4, we assume that x € Q4 and d; (p) 1s set as we defined
for t = 4. By (9e), d;(p) < 0 for each (i, j) € A\S(p), so the condition (C1) holds. In
order to prove that the condition (C 2) holds, we first show that for all 7, j, k& €
ViMp} dy(p) + du(p) < dy(p). For any ¢, j, k e V\{p}., let d(p) = -1 S, + 1+ x(E
(S)) and dy(p) = -1 S, [ +1 + 2 (E(8y)). Since i, k € S, S,,

dyp(p) 2 =18, U8, | +1+x (E (S, Sy))
2=1 811 =18y 1 +18,n 8y | +1 42 (E (S)+% (B (Sp) -x (E (8, N S,))
>~ S+ 1+x(E(S))-18y 1 +1+x (E (So)) -1+ 8,8y | —x (E (8, »S,))
2 d;;(p)+d(p).

The second inequality is due to the fact that x(E(S;w Sp)) = x (E(S,)) + x(E(S,)) -
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x(E (S, 8,) and the last inequality holds by (9¢) for S = S, n S,. Consider a di-

rected cycle C in G [V]] which passes node p. Any directed cycle C with |Cl= 2
satisfies the condition (C2) by (9e) for | S|= 2. Suppose that |C|> 3 and assume

that C={({, 1), ..., (j, p)} and d, (@) =-18, |+ 1 + x(E(S))). Then

Y Ao (p) < dp () +dy(p) +dj,(p)

(@n)=C <=8 1+1+x(E(S)) +x,, +x
<181 +1+x(E (S, wi{p})
<18, |+1418 | +1-1

1.

ip

fA

Recall that d(p) + d.(p) < d,(p) for all g, r, s € V,\{p}. Therefore, d;(p) is
greater than or equal to the length of any path from ¢ to j. It follows that the first
inequality holds.
Finally, we now show that Q5 c P5. Consider x € Q5 and set d;(p) as we de-
fined for ¢ = 5. Consider any directed cycle C in G[V \{p}]. Then
> di(p)= Yomaxtl+x; +ay, —L+ag +x, +0,}
(i,/)eC (,/)eC

= > max{x, +xj, X5+ %y + X1 C
(2.j)eC
<0

The inequality holds by (99), thereby the condition (C1) is satisfied.

Consider a directed cycle C in G [V,] which passes node p. Any directed cycle
C with | C| = 2 satisfies the condition (C2) by (9d), so we assume that [C| = 3.

Let C = {(p, i,y iz), s (i 0,66 )} and €' = {(iy i), -, (i 8, G, i)} Note that
|C’|=|C|-1and p ¢ C'. Then
Y dy(p)= Y. de(p)+dy (D) +d; ,(p)—d;; (D)
(g.r)eC (q,MeC’

< Yd(p)+xy +x, (Lo g ;)
(q,meC

= qur (p)+1- X0
(g,reC’

< 1

The last inequality holds because the length of the cycle C' is less than or
equal to 0. 0
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4. CONCLUSIONS

In this paper, we have produced proofs to characterize the projections of five ex-
tended formulations with precedence variables for the ATSP, developed by Gou-
veia and Pires [4, 5], into the natural variable space. By exploiting the longest
distance property, we have developed a unifying framework that enabled to give
alternative proofs for the projections of three formulations and new proofs for the
remaining two. Gouveia and Pires [5] have also introduced some other generaliza-
tions of (9¢) that result in extended formulations with precedence variables other
than those introduced in this paper. When analyzing the projections of these for-
mulations into the natural variable space, we could use the same framework de-
veloped in this paper.

To prove that new formulations with precedence variables are any help to
solve the ATSP, we need to have an efficient algorithm to solve the relaxations of
the proposed formulations. Therefore, finding such-an algorithm would be an in-
teresting research issue. Another future research is to find a formulation with
precedence variables stronger than the ones developed by Gouveia and Pires [4, 5]
by identifying valid inequalities.

Acknowledgements: The author thanks Luis Gouveia for pointing out the exis-
tence of the extended formulations considered in this pa-
per.
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