International Journal of Managernent Science
Vol 7, No 2, November 2001

Reliability Models for Bedundant Systems Using
Phase-type Distributions

Sinmyeong Moon

Department of Industrial Engineering, Seoul National University
Seoul 151-742, Korea

Changhoon Lie

Department of Industrial Engineering, Seoul National University
Seoul 151-742, Korea

(Received May 2001 ; Revised Nov, 2001 ; Accepted Nov. 2001)

ABSTRACT

This paper presents the reliability models for redundant systems composed of repairable compo—
nents whose failure time and repair time distributions are phase—type, It is shown that the distribu—
tion of time to system failure is also phase—type. The dependency between components are consid—
ered and integrated into the model by the use of the rate adjustment factor. The phase—type repre—
sentation is constructed for the system through algebralc operations on the parameters of compo—
nents' failure time and repair time distributions and the corresponding rate adjustment factors. Types
of system structures considered are parallel, k~out—of—N system with load sharing scheme and
standby system with operation priority.

1. INTRODUCTION

Phase-type distribution (PH-distribution) is a type of distribution represented by
Markov process with an absorbing state. The main feature of PH-distribution is
the versatility that enables one to model any probabilistic behaviors. PH-
distribution is expected to overcome the limitation of exponential distribution
which is frequently assumed in reliability modeling. Several studies have been
made on the estimation of PH-distribution from empirical data and approxima-
tion of popular distributions into PH-distribution [3, 9]. Another feature relates to
the useful closure properties about mathematical operations, which can be ap-
plied to the reliability modeling from the knowledge of system structure. The only
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drawback is the computational complexity that highly depends on the order and
sparsity of transition matrix. To enhance the analytical tractability, minimal rep-
resentation is suggested as a Triangular PH-distribution (TPH-distribution) [3, 5,
11].

Although few studies on the application of PH-distribution to reliability
modeling can be seen, [10] presents two basic theorems which show that the fail-
ure time distributions of series and parallel systems composed of 2 nonrepairable
components are also represented hy PH-distributions. This is a simple application
that illustrates the modeling power of PH-distribution which makes it possible to
integrate the structures into distributional representation of system failure time.
But it is more realistic to consider repairable components. Furthermore, the de-
pendencies between components need to be considered for redundant systems.

In this paper, the redundant systems composed of repairable components
whose failure time and repair time distributions are given by different PH-
distributions are considered. It can be shown that the distribution of time to fail-
ure of nonrepairable system is also represented by PH-distribution whose transi-
tion matrix is built by proper Kronecker operations on the transition matrices of
individual components. Beginning with a simple case of state-independency, the
results are readily extended to the case of state-dependency. Rate adjustment
factor is introduced for the integration of state-dependency, which represents the
change in failure or repair rate. Finally, it is possible to construct the system ma-
trix for reliability from the knowledge of each component’s failure time and repair
time distributions, system structures and state-dependent factors. The coverage
of system structures includes parallel, k-out-of-N system with load-sharing sche-
me and standby system with operation priority. Eigenvalue approach is adopted
for the computation whose procedures are presented.

NOTATION
N number of components
@) superscript, component index, 1=1,..., N

PH@",T®) phase-type representation of failure time distribution of compo-

nent ¢

m® order of PH(a®, T®)

PHP®,89) phase-type representation of repair time distribution of compo-
nent i

n® order of PH(R?,s®)

e, (px1) vector, all elements are 1

v (1x p) vector which is equal to (1,2,...,p)

P
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E,, (pxq) matrix, all elements are 1

I, (px p) identity matrix

” VH Holder norm of vector equal to ” v”1

T(Si) — T(i)emm

Sg') —S(i)enm

TS (m®? x ') matrix with identical columns T

S (n¥ xm™) matrix with identical columns SY

AW (m® xm®) matrix equal to diag(al(’:), s al(]‘;)(.,)

B{’ (n® xn') matrix equal to diag(8%, ..., 7(1‘2,)

xW state of component i, xWe {1, .., m® .., m® 4 IL(L)}

z® super-state of component i, 1 if component 7 is operating and 0 if
it is in failure

j subscript, super-state index of system, j=1,..., 2N

i index of the component whose state has changed during transition
from ; to j', which is obtained by < vy, z;-z; >

Q state space of system

A state transition rate matrix of system

Py, 1s) the number of states at super-state j when a subsystem com-
prising components iy,1;+1, ..., 1, is considered, which is comput-

Ly . ) }
ed by H{m(")zy) +n® (1—z§‘) %, for 1; <75 and 1, otherwise
i=i,

H) distribution function of time to the first system failure

R() reliability function of system

ASSUMPTION

(a) Initially each component is operative, which leads to setting ) , =0, for

all 7.

m

{(b) Repairing time cannot be zero, which leads to setting ,B,(Li) =0, forall 1.

(‘)+]

(¢) Repair makes each component renewed.
(d) Repair facility is available always.
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2. PH-DISTRIBUTION

2.1 PH-distribution

PH(a, T) of order m is defined as the time until absorption in the Markov proc-

ess on the states {l,...,m,m +1} with infinitesimal generator

T T,

=y 0

M

where the mxm matrix T satisfies T; <0 for 1<i<m,and T, =0 for = ;.

I
Also Te,, +T, =0 and the initial probability vector of Q is given by (a,,,,;)

with oe, +a,,, =1. When transition matrix T is a triangular matrix, it is

m
called TPH-distribution. Distribution function and the ith moment are respec-

tively given by

F@t) =1-oexp(Tte,, (2a)
M, = (-1)'ilaT ", . (2b)

Consider component t, whose failure time and repair time distributions are rep-
resented by PH(a”, T®) and PH BY, 89, respectively. The state of compo-
nent i alternates between operation and failure and the process is renewed after

each repair, i.e. the behavior of individual component is described as an alter-
nating renewal process. Transition matrix of each component is given by

, @ TORE
A(l) — ‘ T 0 o] (3)

C|SPAP  g®

Detailed explanation can be seen in [10].

2.2 Kronecker Algebra

Kronecker Algebra is frequently included in mathematical operations of PH-
distribution. Let A€ Ry, and Be R, . The Kronecker Product of A and B is

given by

anB - ayB
A®B= : (4)

auB - ayB
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Let AeR,, and Be R,, . The Kronecker Sum of A and B is given by
AoB=(A®L)+d,®B). )

The following two properties are obtained in [4, 6].

Property 1
(a A+B)®C=A®C+B®C. (6a)
b) AB+C)=A®B+A®C. (6b)
Property 2
(A®@B)(C®D)=AC®BD. (7

3. STATE-INDEPENDENT CASE

We start with state-independent case where failure and repair behaviors of each
component are independent of the states of other components. System state is

W

represented by x =(x, ..., ™) . Considering all states, general transition ma-

trix can be stated in terms of Kronecker Algebra [1], which is given by
A=AV AP o...oA™ . (8)

Since what we need to know to decide the system failure is only the informa-

tion about whether the components are in operation or failure, we introduce the

n

super-state vector z = (2, ..., ™). Systematic ordering of system’s super-states

is possible from the Kronecker Sum. Index j for a super-state is related to the
component’s super-state by the relation;

N R 9N~
j=2% =Yz 277 9
=1

System state space is divided into subspaces in terms of z, namely,

AY

a=Uo;. (10)
1

S

.,
1l

In reliability model of redundant systems, not all states are available and



78 MOON AND LIE

there exists a set of states which indicate system failure, which is regarded as an
absorbing state for PH-distribution modeling. For example, in case of parallel
structure, the state subspace Q,: includes all states indicating system failure.

The transient super-states are defined only from the knowledge of system struc-
ture. The following base theorem shows that the PH-distribution representation
of system failure time is constructed by the simple algebraic operations on the
parameters of components’ failure time and repair time distributions.

Theorem 1
Suppose the system fails when the number of failed components is greater than or

equal to N(i N). Then H() is a PH-distribution represented by PH(y,L) of

order n and the parameters are given by

n= 3 _o;(LN), (11a)
{Jillz,|[=N-N}
'Y=((x(1)®"'®0t(N),0), }’n+1=0: (llb)
where
g QU] @) ) ;
;1%(1,,;_1) @[T 20 +800-20 )]®I%(,—+LN) ,LfH z; —sz=0
i=
L P - - . — - - . ?
Y 0 ® [Tg' B 28 +80A -2 >)] ®L, ) Jif| 25 -2, | =1
0 ,olw
(11e)
L, = [L9)
where
(@ ; — N
101, 2 Coin T Sepiam i 2] =N-N+1 (11d)
i = 3iug= .

0 ) ,olw

(Proof) The proof is given in the Appendix.

From Theorem 1, we can derive the reliability function and mean time to
failure(MTTF) of system, which are respectively given by

RGt)=1-H@) = yexpLdle, , (122)
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MTTF = —yL'e, . (12b)

Theorem 1 is directly applicable to the reliability model of parallel and k-out-
of-N system. For simple illustration, consider a parallel system of N=2. Tran-
sient super-states of system are ordered as follows;

Zl = (171): ZZ = (150)7 Z3 = (0:1) (13)

and the representation PH(y,L) of H(t) is given by

r=@®@a®, 0), (142)
T @10 +1,0 ®T? [ ®TOBYP TVBY @1 .,

L= . ®8PA® TO QT o +1 0, ®8@ 0 ,(14b)

-m a 0 n m

SPAPY @I 0 SR, 0 +1 0 @T®

0

1

Lo =T ®e o |. (14c)
(2)
e"'m ® TO

4. STATE-DEPENDENT CASE

In this case, the failure rate of each component changes with the system state. It
is a practical consideration in redundant system [2, 12]. We introduce the rate
adjustment factor that is determined by the system state. First we need to inspect
the distributional change incurred by the addition of constant value to failure rate

Theorem 2
Let A(t) denote the failure rate function of failure time distribution F rep-

resented by PH(w,T) of order m. Assume &, =0. Then for, §=0, i) =

A() + & is the failure rate function of F represented by PH(w,T-61,,).
(Proof) The proof is given in the Appendix.

Remark 1

In view of transition rate matrix of PH-distribution, adding constant value to the
failure rate function is equivalent to adding the constant value to each transition
rate to the absorbing state while other transition rates are remained unchanged.
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The following property shows that MTTF increases by the addition of rate
adjustment factor.

Property 3
For 6§20, the mean of PH(a,T-6I) is greater than or equal to that of

PH(a,T).
(Proof) The proof is given in the Appendix.

Let lgi) and 51(-") denote the failure rate and the rate adjustment factor of compo-

nent i when system’s super-state is Jj, respectively. Furthermore, let lo(i) de-

note the reference failure rate of component ¢. Then the state-dependency for
failure behaviors is represented by

I OEVIIORTIZE (15)

Similar consideration is possible for the repair rate. Let yy) and ¢ J(-':) denote
the repair rate and the rate adjustment factor of component i when system’s

super-state is j, respectively. Furthermore, let ,uo(i) denote the reference repair

rate of component i. Then the state-dependency for repair behaviors is repre-
sented by

1 ® = w0+ (16)
The following cases exemplify this model.

CASE 1 Load-sharing parallel and k-out-of-N system
Consider the case when failure rate of each component is affected by the number

of failed components. This effect is modeled as follows: Let AY represent the

failure rate of component ¢ when all the components are operating. Then

() _ s
6,7 =6

Ej" where Z; = (luzgl),...,l-z'(iN)). 17

CASE 2 Stanby system with operation priority

Each component has different failure rates in operation and in standby state. All
components are ordered by the operation priority. The component of highest pri-
ority is operating if available and the other components are in standby state. If
operating component fails, the component of next highest priority among avail-
able components starts operation and it will be switched to the standby state as
soon as the component of the highest priority becomes available. Assuming the
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component index is ordered by its priority, this effect is modeled as follows: Let

! is the first index in

i} denote the only component that is currently operating. i
z; such that z&i) =1. Let /18') represent the failure rate of component i when it

is in the standby state. Then

R T

@ _ :

g;" = - (18)
0 ,if >

CASE 3 Multiple Repair facilities
When there are multiple repair facilities and they are always available, repairing
speed increases as the number of operating components increases. This effect is

modeled as follows: Let ,u((,i) represent the repair rate of component ¢ when all

the components are failed. Then

£H =¢®

2] 19)

Now, the modified PH-distribution representation of system failure time is
constructed by the algebraic operations on the parameters of components’ failure
time and repair time distributions and the associated rate adjustment factors.
The result is given by theorem 3.

Theorem 3
Let 5}-“ and g}” denote the positive rate adjustment factors for failure rate

and repair rate, respectively. Then, H(¢) is a PH-distribution represented by
PH(y, L) of order n and the modified parameters are given by

y=@¥ ® . @a®™,0), y,,,=0, (20a)
L=[L;)
where

N . . . -

SToain [ TO -69T,,0 )2 +(8° — 01, Ju 281, .1 1 Jif |2, -2,]=0

Ly =30 ®[(T;§")+5}i')E [,..,)Bg')zj(.”+(§,§i')+g§”E ,,-,)Ag')(l—zﬁ"'))]cglm-ﬂ‘ y if|zi-z]=1

m' n

0 , olw

(20D)
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Lo =[LS]

where

0o Z ewj(l,i_l) ®(T(()L) + 51('i)em(,> )® e%(i+1,z\r) , Lf H Z; ” = N—N +1
Lj = {i;zj(')zl} . (ZOC)

0 ,olw

(Proof) The proof is given in the Appendix.

5. COMPUTATION METHOD

Main complexity in reliability computation is caused from matrix-exponential
solution. Typically a numerical solution by Runge-Kutta method can be used. In
many practical reliability computations, however, this method requires large
computation time. In this paper, eigenvalue approach is adopted, where the reli-
ability is computed by the use of Vandermonde system, after obtaining eigenval-
ues. The procedures are summarized as follows:

5.1 Eigenvalue Solution

Most efficient method of finding eigenvalues of large matrix is known to be Itera-
tive QR-method based on Schur decomposition theorem [6,8]. To reduce the com-
putations, the matrix is first transformed into a Hessenberg matrix by House-
holder method or Givens method. Since the target matrix L that 1s given by
theorem 1 has many zero entries, the computational efforts can be reduced. After
the iterations, good approximations for the eigenvalues can be obtained. The pro-
cedures can be summarized as

(a) UTLU=H =H, (Hessenberg reduction) (21)

where U is a product of several transformation matrices.

() H, =Q,R; (QR-factorization)

Hk+1 = Rlea = Q%Hka L R=1,2 ... (22)

where Q, 1s a unitary matrix and R, is a upper triangular matrix.
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5.2 Matrix-exponential Solution

Details for the exact solution of the matrix-exponential is available in [6]. In
many reliability models the eigenvalues are distinct [7]. Hence, we summarize
the main results when matrix L 1is semi-simple, that is, when L has either dis-
tinct eigenvalues only, or multiple eigenvalues but with corresponding linearly
independent eigenvectors. The proof of theorem 4 is omitted since it can be found
in many texts including [6].

Theorem 4

Suppose A e R,, is a semi-simple matrix with distinct eigenvalues py, py,..., 0,
where s<n.Then
A-
-ST1 22 e (23
i=1j=1 IDI

j=

6. NUMERICAL EXAMPLES

The following examples present the accuracy of computation and the effect of rate
adjustment factors for some simple structures. CASE I and CASE 2 are consid-
ered for exemplifying state-dependent cases. Each system is composed of 3 com-
ponents and each component has PH-type failure time and repair time distribu-
tions. Specific descriptions of input distributions are given by Table 1.

Table 1. Descrptions of input distributions

Compo- Failure time distribution Repair time distribution

nent () a® | 70 Mean B ® S50 Mean
1 (0.4, 0.6) (_g 5 _gi} 360 | (0.2,0.8) (_ 10'2 _241‘ j 0.58
2 (0.4, 0.6) [‘85 _%i] 270 | (0.2,0.8) (“éz _24;] 0.58
3 0.4, 0.6) (_8‘5 _%;J 193 | ©.2,08) (_ . _0241} 0.58

In case of load-sharing system, equivalent loads are assumed for all compo-

nents, i.e. rate adjustment factors are set to be 5;” =4 Hijl ,

i.Figurel

and Figure 2 present the reliability functions for parallel and 2-out-of-3 system
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respectively, where the dots represent the simulation results. In these figures,
curve (a) represents an independent case with no load-sharing scheme. For the
state-dependent case, reliability function of respective systems are computed for
various values of O . As can be seen in the figures, computation results are well
matched with the simulation results.

(a) independent
b (a) (b) 5=0.04
0.8 | () 3=0.08 -
(d 5=0.12
(b) (&) §=0.16
— . . simulation
> -
~ 0.6
iy
=
£
.5
o 04
&
" \\\
&w "
0 50 100 150 200
Time t
Figure 1. Load—sharing, 3—components parallel system
' |
(a) independent
) &=0.04
0.8 (c) 5=0.08 L
(@ 5=0.12
(e} 3=0.16
. simulation
)
= 06
&
=
=
8
o 04 .
m [ -
0.2 : \\x
L ]
N s
© %E

0 2.5 5 7.5 10
Time t

Figure 2. Load—sharing 2—out—of—3 system
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In case of standby system with operation priority, the increments of failure rate
by switching from standby state to operation state are assumed to be the same for
all components, i.e. if component I is operating, then rate adjustment factor for

component I is set to be & E') =3 . Figure 3 also shows that the results from

computation and simulation are well matched in this case.

T

(a) §=0.04
{b) 3=0.08

(c) 8=0.12
(d) §=0.16 _ﬁ

. simulation

0.8

0.6

Reliability R(t)

0.4

/

%

0 50 75 100 125 150
Time t
Figure 3. 3—components standby system with operation priority

7. CONCLUSIONS

The main result of this paper is the reliability modeling of redundant systems
from the knowledge of parameters of PH-distributions representing each compo-
nent’s failure and repair behaviors, system structure and state dependency. It is
shown that the structural property of a system is integrated into the phase-type
reliability modeling.

This study is expected to serve as a starting point to construct unified phase-
type reliability models for systems composed of many subsystems of different con-
figurations. For example, the reliability of a system composed of 2 subsystems in

series each of which is composed of components in parallel can be represented by
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the phase-type model. Reliability modeling for other types of standby structures

using PH-distribution is left as a further study. Finally, unified phase-type reli-

ability modeling for general systems need. to be further investigated.
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Appendix

(Proof of Theorem 1)
First, general transition matrix A is rewritten in terms of the parameters of
failure time and repair time distributions of components. Then, by aggregating
into an absorbing state, the phase-type representation of time to system failure is
obtained.
Let ¢(;,1,) denote the number of all states when a subsystem comprising com-
iz .
ponent iy,1; +1,...,15 1s considered, which is computed by H(m(’“) 09y, for
i=i,
1151y and 1, otherwise. Let A, denote the transition rate matrix of the subsys-
tem comprising the first % components for % =2 . Then from (8),
R
Ak = Ak—l ®I¢(k,k) + I(p(].,k—].) ® A( )
k-1 k
= Ak—z @ Igo(/a—l,k—l) ® Iqa(k,k) + I(p(l,k—Z) ® A( ) ® Iﬁ’(kx k) + I{D(l,k—l) ® A( )
=AD 2
=A ®I¢,(2’2) ® ®Iga(k,k) +I€D(1,1) @A ®Iw(3,3) ® ®I(p(k,k) +

k-1 k
10 @AFV O 0 + 1,0 ) ®AP.

Hence, A, can be expressed by
L. D) ®
13 13 13
Ak :ZDk 3 LUhel”e Dk :Iqﬂ(],i—l) ®A ®I§D(i+1,k)'

i=1

Consequently,
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N o
b

The matrix DY) is pertinent to component i and can be expressed as Kronecker
Product form;

T®  TORY

G _
DN"I(P(l;i—1)®\§c()i)A8) g0 |®Bletsm -

The role of identity matrices I,q; 5 and L,q,; ) is to construct the structure of
A.. The structure of I,;; 1) represents all the possible states of (xV, =@, .

x%Dyand it is composed of 2" identity matrices of which each represents the

structure corresponding to the partial super-state (2, 2%, ..., 2¢°Y) . Namely,
Lan..o 0
I
(1,1,..,0)
I(p(l,i—l) =
0 L0,0,..0

Similar interpretation is possible for I,y ny. Thus if we let I,_ and I,, repre-

sent identity matrices whose structures correspond to the partial super-state

(z(l), o, 25Dy and (Y, L z(N)) respectively, then

I oTY?®[, I_oTUBY®I,,

DY = = -
N I ®SPBP ®1, I,_®SYel,

Now considering the meaning of Kronecker Product, the following facts are ob-

tained;

(2) DY adds I, T ®I,, in all diagonal entries which corresponds to the

system’s super-state z where z® =1, and such an entry is added by all ©.
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®) DY adds I, ®TBY ®1;, in all entries which represents the transition

of system’s super-state from z to z' where z® =1 and 2@ =0, and this

is the only addition to such an entry.

() DX,) adds I, ®8SY®I,, in all diagonal entries which corresponds to the

system’s super-state z where z® =0, and such an entry is added by

all .

d) DY adds I,_ ®S{"BY ®1,, in all entries which represents the transition of
i

system’s super-state from z to z' where 2% =0 and 2®¥ =1, and this is

the only addition to such an entry.

The dimension of identity matrices I._ and I,, is determined by the current su-

per-state of all components except component ¢ . From these facts, complete tran-
sition matrix A is built as seen in the theorem. But in reliability model, not all
states are available. All the states indicating the system failure are aggregated to
an absorbing state. Consequently the transition rate to the absorbing state must

be recalculated, which is done by summation of all the row elements in the transi-

tion rate matrix from z; to z; where ” zj” =N-N+1 and ” zj.H =N-N. Thus

the summation is given by

EOR)
; (Iqa,(l,i—l)@TOl By ®Iw,(i+1,N))e¢,(1_.N>
{i;20=1}

X (Iqa,(l,i—l)%,-u,i—l) )® (To(i)Bg)%, i) )® (I¢, G+1N) 8y, (i+1,N))

CEA

— (i
= Z € (1,i-1) ®T0L) @€, i, N

{2 =1}

Finally the phase-type representation of H(#) is obtained.
Q.E.D.
(Proof of Theorem 2)

In [2], failure rate is given by
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_F@
A@) = RO

By definition of PH-distribution, the failure rate of PH-distribution becomes
aexp(T)T,
aexp(Tt)e,,

aexp[(T - sInl(T, +Se,,)
aexp[(T-oDtle,,

+8

Z(t)

3 ocexp('i“tﬁ‘o B f"(t)

aexp(Ttle, B(t)

Thus, A(f) is the failure rate function of new PH-distribution represented by

PH(o.,T).
Q.ED.

(Proof of Property 3)

The difference of means between two PH-distributions is given by

(—aT%e, ) - {-a(T-81) e, }
=a{(T-sD)™" -T'}e,
=Sa(T-61) T e,
= 5f—~(T=SDH-T e,

Since —(T-6I)! and —T' are both positive matrices from the property of

transition rate matrix, the difference is greater than or equal to zero.

Q.ED.

(Proof of Theorem 3)
The structure of A depends on the transition diagram, not on the state-dependency
From theorem 2, it can be said that the state-dependency only appears in the
parameters of PH-distribution. Hence, theorem 1 is readily extended to theorem 3
by replacing the parameters of failure time and repair time distributions.

Q.E.D.
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