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Abstract

Considerable interest has evolved in the flow of non-Newtonian fluids in channels of noncircular
cross section in compact heat exchangers. Analytical solution was developed for prediction of the
flow rate and maximum velocity in steady laminar flow of any incompressible, time-independent
non-Newtonian fluids in straight closed and open channels of arbitrary, but axially unchanging
cross section. The geometric parameters and function of shear stress describing the behavior of the
fluid model were evaluated for fluid flow among a bundle of rods arranged in triangular and
square array. Numerical values of dimensionless maximum velocities, mean velocities, pressure-
drop-flow parameters and friction factors were evaluated as a function of porosity and pitch-to-

radius ratio.

1. INTRODUCTION

The flow of non-Newtonian fluids has been
the subject of increasingly extensive study in
recent years. Considerable interest has evolved
in the flow of non-Newtonian fluids in channels

of non-circular cross section. A method has

recently been proposed by Kozicki et al.”! and
Kozicki and Tiu® for prediction of the flow rate
and maximum velocity in steady laminar flow
of any incompressible, time-independent non-
Newtonian fluids in straight closed and open
channels of arbitrary, but axially unchanging
cross section. The method requires only a
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knowledge of two geometry parameters and a
function of shear stress characterizing the
behavior of the fluid model.

Kozicki and his coworkers!'"231i4li5 haye
presented a general approximate method for
calculating laminar pressure drops for non-
Newtonian fluids flowing in ducts and open
channels. They considered a wide variety of
fluid models such as Bingham, and Ellis fluids.

Kozicki et al."™ introduced a new generalized
Reynolds number, Re* such that the friction
factor for fully developed laminar flow of a
power law fluid through noncircular duct
having a constant cross-sectional area is given

by a familiar equation;

16
f= Ro~ (1)
where
_2-ndn
Re* = _pu a, (2)

8"\ b+ )k
n

The geometric parameters a and b depend on
the geometry of the cross-section. Since data
presented in the literature for Newtonian
fluids are generally more complete and precise
than that available for other fluids, values of a
and b were calculated from expressions for the
bulk velocity and maximum velocity derived
mathematically using the Navier-Stokes
equation.

The predicted values of the geometric
parameters a and b are thus in well agreement
with the published values for Newtonian
fluids'.

For a circular duct, the values of a and b are
0.25 and 0.75, respectively and the generalized
Reynolds number becomes tantamount to Reg,
defined as pﬁ2"nd2/1< proposed by Metzner and
Reed®.

2n n
pu_d,

Re* = (3)

8"1(0.75+ 9'72?) K

Dividing Reg by Eq. (2) and substituting
Eq.(1) into (3), the following equation is
obtained;

f - Reg = 25" }(b+ —Z—) )

Values of a and b for circular sections were
introduced directly by evaluation of the
Mooney-Rabinowitsch equation. The analytical
solutions available in Bird et al™ for concentric
annuli were used to obtain the geometric
parameters for this section. For rectangular,
elliptical, and isosceles triangular sections, the
solutions for Newtonian fluids presented by
Lundgren, Sparrow, and Starr® were utilized
in the examinations of the geometric
parameters a and b.

The purpose of this research is to report the
geometric parameters a and b evaluated for
fluid flow among a bundle of rods arranged in
triangular and square array. These will be
evaluated on the base of analytic solutions for
longitudinal laminar flow of Newtonian fluid
between cylinders arranged in regular
array°"11l Numerical results of dimensionless
maximum velocities, mean velocities, pressure-
drop-flow parameter and friction factors will be
evaluated as a function of porosity and pitch-
to-radius ratio s/ry. Finally, the maximum
velocities and mean velocities will be used to

calculate the geometric parameters a and b.
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2. LONGITUDINAL LAMINAR FLOW
BETWEEN CYLINDERS ARRANGED
IN REGULAR ARRAY FOR
NEWTONIAN FLUIDS

2.1 Mathematical Analysis

The geometry considered in the present
analysis is shown in Fig. 1. From the symmetry
of the situation it is easily seen that attention
need be focused on only the cross-hetched
element. The enlarged view is shown at Fig. 2.

The conservation principle requires that
under steady state condition the net change of
momentum must be equal to the forces. For
fully developed flow of Newtonian fluids, the
governing equation is so obtained in cylindrical

coordinate system

Fu 1 ou 1 Fu 1 dp

Ll =L ®)

o Tr T T e i dx

Eq. (1) is frequently called Poisson’ s

equation and the general solution jg!!2teinensn
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Fig. 1 Geometry of channels arranged in regular
array
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Fig. 2 Cross - hetched element of channel

“AsB 1. L dp K
u=A+B b7 (- dx)+Kil(CKrK+DKr )
- (Eg cosK0+F sin K0) (6)

The boundary conditions to determine the
constants in Eq. (6) are expressed as follows;

2.1.1 For the case of triangular array

ou Ju
at 9—0,—51'1—— ae—0, Fr =0 (7
at =£, ﬂ=_a‘i= 0, K=6,12,18, - (8)

6’ on 0
ré 1d
at r=ry, u=0, A=-Blnry+ ZO (- _ll Ep) &)
Dg = -Cgr?X

Also, for overall force balance

e Js/cose ER _ Jﬂﬁ _a—u__
jo o (dx)rdrde— o u(ar )r=ro red6 (10)

The evaluation of this equation from Eq. (10)
yields

V3 o L.dp (11

an pn dx

Bring together the findings of the previous
paragraph, Eq. (6) becomes

/ 1 dp r 1, 1 dp
VO =GPy T L 2 8Py 2
u s " d )lnro 4( " !)(r 75%) +

ngj (r - :Toj)mj cos 650

where G, =C/E; (12)

Finally, the boundary condition of %}L:— =0 at
s

s being imposed on Eq. (12), one finds

after rearrangement

r=

3 Ascos®) [cos(ej-l)e+(&°:_s°)121cos(6 i+1)6)
i~1

+ y3 cos29 - L =0 (13)
n 2

where
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Table 1. Numerical Values of A;

Table 2. Numerical Values of 3;

*?— Al A2 Aa A4 A5 % 81 82 83 64 85 86
0 o
4.00 -0.0505 | -0.0008| 0.0000 4.00 |-0.1253(-0.0106/{-0.0006( 0.0000
2.00 |-0.0505 | -0.0008] 0.0000 2.00 [-0.1250(-0.0105}-0.0006; 0.0000
1.50 -0.0502 | -0.0007 | 0.0000 1.50 (-0.1225(-0.0091|-0.0002] 0.0000
1.20 |-0.0406 | 0.0007 | 0.0002 | 0.0000 1.20 {-0.1104{-0.0024|-0.0015} 0.0003| 0.0001| 0.0000
1.10 | -0.0416 | 0.0028 | 0.0004 | 0.0000 1.10 {-0.0987(-0.0036( 0.0029] 0.0005| 0.0000
1.05 -0.0368 | 0.0043 | 0.0003 | -0.0001 | 0.0000 1.05 |-0.0904(-0.0073; 0.0032| 0.0002|-0.0001| 0.0000
1.04 -0.0357 | 0.0046 | 0.0002 | -0.0001 | 0.0000
1.03 | -0.0345 | 0.0049 | 0.0002 |-0.0001 | 0.0000 2.1.2 For the case of square array
1.02 |-0.0332 | 0.0051 | 0.0000 |-0.0001 | 0.0000 By a similar method the velocity distribution
1.01 |-0.0319 | 0.0052 | -0.0001 | -0.0002 | 0.0000 for the square array is obtained
1.00 [-0.0305 | 0.0053 | -0.0003 | -0.0002 | 0.0000
2 o 1 dp r 1 1dp
. j u=——58%-=—-")In— -~ (- = —)r2r? +
AJ=GJ 6] Sﬁj - ( mn dx ) ro 4( N dx)( 0)
(--1-@)52 ZG " rod 4
B dx Pl i (rd - r4j)cos 70 (14)
Eq. (13) provides a method for determining
) ] where 4; SY
the Aj (that is Gj). Lundgren et al.”™ applied i=Gi —
Eq.(13) at 6 points along the boundary. They (- —“ap )S?

successively evaluated Eq. (8) at six values of 6
between 0° and 30°. This provided six equations.
They truncated the series after six terms (that
is [=6) so that there are sufficient simultaneous
equations to evaluate the coefficients A1, A2, As,
-+ Ae. This procedure was repeated with the
use of seven boundary points and seven series
coefficients, and so forth. The sets of coefficients
Aj from these repeated calculations were
compared. It was immediately seen that adding
additional terms to the series did not
significantly affect the numerical values of the
first few coefficients. Further it was found that
only these first coefficients are important in
the computation of shear stress and velocity
distribution.

Numerical values of Aj computed as outlined
above, are listed in Table 1. With the
determination of the Aj (that is Gj) one may
return to Eq. (12) and state that the velocity
distribution for the triangular array is now

available.

and numerical values of 8; are listed in Table 2.

2.1.3 For the case of cylinders touching
Shih® provided solutions to laminar flow in
three-point-star and four-point-star conduits,
which is the limit case of cylinders touching.
The coordinate axis is placed at O, in Fig. 3.
The starting equation is again Poisson’s
equation

Fig. 3 Geometry of three-point-star and four-
point-star conduitsa
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2u 1 ou 1 %

Pt T e 15)
where 1 dp
q_ l—l dx

The general solution is

2
u(r,8)=A+B In r- —% g+3(CrE+Dyr®)
(Ex cos KB+Fy sin K0) (16)
at r=0, uis finite, B=0
DK = 0

at 6=0, ou _

3 - 0, Fg=0
at 0=0, du nr

= =—,n= 3, ...
pYS 0, K patis 1,2,3,

Bring together the information, one gets :

u(r,0)=A - % r?+3 Agr¥ cos K9 amn
where Agx=CrEx
at (r,0),u=0, A= Lr2- LAk (18)
Substitute Eq. (18) back into Eq. (17), one
obtains :
u(r,9)=—Z— [r2-r2-3 Agrk-rEcos KB)]  (19)

where Ag= 4;41(

Since boundary curve may be expressed as
r=f(6) for 0<0<a one may formulate as u(r,
0)=0, for 0<<0<a ; (rg= f(6) so Eq. (19) yields

r2-r2=SArK-r¥cosK8) 0<6<a (20)
K

Eq. (19) is arranged in a dimensionless radial
variable, R = r/r;,

2
wR &=L [1-R% 3., (1-RK cos KO)|  (21)

The compound constants (A'xr%2) are
replaced by C,, which are to be determined by

Table 3. Function Coefficients for Solution to
Flow in Star Conduits of p Points

C, C: Cs Cy Cs Cs

1.43334 11.17184 | 1.10089 | 0.39062 {-0.32975| -0.25817

4 |1.41642 |1.15781 | 0.40566 |-0.90891-1.32956 | -0.54210

a set of N equations generated by N boundary
points. By discarding the terms after N in the
series of Eq. (21) and substituting into it, one
pair at a time, the coordinate values of N (R,,
0;) pairs along the boundary curve at
arbitrarily selected N boundary points (R, 0,), i
=1, 2, ...N, a set of N linear algebraic equations
each containing the first N. C» can be easily
generated. This set of linear equations can be
solved to obtain the N coefficients needed in
the series solution given by Eq. (21), which is
supposed to be a finite series containing N
terms. The solution is thus complete since all
constants have been determined by satisfying
the boundary conditions, at N discrete
boundary points.

The function coefficients obtained by this
method for flow in the three-point-star and
four-point-star conduits are listed in Table 3.

The results calculated from these function
coefficients are compared with those of
Lundgren et al.”® limit case, and it shows very
good agreement.

2.2 Derivations

From the analytical solutions previously
obtained the numerical values of pressure
drop-flow rate relation, friction factor-Reynolds
Number relation, maximum velocities and
mean velocity are evaluated as a function of

s/ro or @, theé porosity of the array.

2.2.1 Pressure Drop-Flow Rate relationship
For volume flow rate Q ,

Q=[y° [ urdrde (22)

(1041
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in which u is given by Eq. (12) for triangular
array and Eq. (14) for square array.

For square array, the G; in Eq. (14) are
related to the tabulated constants §; (Table 2)
by

(23)

For purpose of integration the dimensionless

variable
r
C=- (24)

is introduced.
Then substituting Egs. (14), {23) and (24)
into the flow rate integral Eq. (22), one obtains:
1 d
Q ( p) 4 { Jn4 J'ls/,ocose[
j=1 4j

)lt; (2;21)

(CY-%) cos4jOIC dG dB}  (25)

where 6, = —Z— has been introduced for the

square array.
The integrals appearing in Eq. (25) can be

carried out in a straightforward way, giving :
Q= (--— @)"o function (—) (26)
Ty

where

function (=2 £3 (slni+1n2-3)+l]
ro 6

S.4 & 0,8/ BJ 1. 832 T
+('r;)j214 e +2 ) g 4(r0) 64
where _ (% cos4j0
J = Io (cos 8)4+2 de

® cos 450
B; = J g (cos 0)%%

In a similar manner the final result for the
flow rate for the triangular array can be

obtained :

T 4 - function (TS) 27
o

on o= 1A (0 o3
function (—).—( ) [ 2n(ln " In cos 30° - 2)

Aj Q; 1r5.1% xj
216] ( 16J 2™ g2
where  ws cos 60 _ fwe cos §/0
=l o e 405 40

"o (cos 0)*¥

The pressure drop-flow rate relationship as a
function of s/ry (and of porosity @) is shown on

Fig. 4. The porosity is defined as

@ = A2 -1 90
(8/ry)? tanf,

A, (see Fig. 5)

Fig. 4 Geometry Model of Porosity @
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Fig. 5 The Variation of pressure drop - flow rate

with porosity and %
0
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2.2.2 Mean Velocity and Maximum Velocity
Mean velocity can be evaluated from :

HAZ u dA
Az

o=

in which 7 is given by Eq. (12), Eq. (14) and
Eq. (21) for triangular array, square array and
star conduit, respectively. Maximum velocity u,

for triangular array and square array can be

obtained by simply substituting (ry/cos %, %)

and (ry/cos -Z—, %) into Eq. (12) and Eq. (14)

respectively. For star conduit, R=0 should be
substituted into Eq. (21) to obtain the
maximum velocity. Fig.6 shows the results of
dimensionless maximum velocity and mean
velocity vs. porosity for triangular and square
Array

2.2.3 Friction Factor-Reynolds Number
Relationship
Refer to Fig. 4, force balance yields :

-(dp/dx)A
=r=——pre—2 (28)
ovo
80 r
0+
60
. Triangular Array
50 - e
f- Re s
40 |
30t .
T
20 r ’\‘:
Square Array \*:\\: .
10 - ‘\\*
o L i Il )
0 02 04 06 08 17
L I | 1 -
[ T T 1] 1y
1 15 2 34 o
— —
1 15 234 oo '

. e__ T  -2dp/dx)As
’ f - pl—lz/ 2 - 7'060 pﬁz (29)
Let Re= pdu
i)
where d =25
Eq. (29) yields after rearrangement :
 Re o [ (9P, 442
f-Re= [Qu( T NI 60r04] (30)

The friction factor - Reynolds Number
relationship is computed for each array from
Egq. (30), and the results are plotted on Fig. 7.

3. GEOMETRIC PARAMETERS FOR
A BUNDLE OF RODS

3.1 Analysis

The relationship between the average
velocity and shear stress for the flow of any
incompressible, time - independent fluid in a
channel of arbitrary section is given by

2u - u 1 TwTE
24w 1 % L Y——drt (31)
ry a Y n
u = Ho i
0 (Jx——)r“? i
1 “ (-%)ro‘i y /

: mean velocity

4y maximum velocity /y
a - i

01 r

of Triangular Array |
0.01 £ of Squure Array
' of Trisngular Array

of Square Array

0.001 j
0 02 04 06 058 1

porosity

Fig. 7 Dimensionless Maximum Velocity and
Mean Velocity vs. Porosity for Triangular
and Square Array
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the aspect ratio & is equal to b/a. The constants
“a” and “b" are geometric parameters
characterizing the shape of the cross section
and is nothing to do with the properties of the
fluid model.

In Kozicki' s paper "2, the general equations
for the bulk velocity and maximum velocity
have been integrated for a number of different
non-Newtonian fluid models and the resulting
equations are presented in Kozicki et al.!".

For Newtonian fluid, Kozicki and Tiu"""®

presented the equation shown below

u 1 1,
2u () (32)
ry a+b p

ry 20 p

in which it has been assumed that no slip
occurs at the boundary of wall. r, is called the
hydraulic radius and given by

_A
n, = P

where A is flow cross section area and P is
wetted perimeter of the wall boundary

After “a" and “b" are evaluated, return to
any different type of non-Newtonian fluid to
obtain its maximum velocity, mean velocity,
stress-strain rate relationship ....etc.

For instance, for power law fluid, maximum
and average velocity can be obtained by using
the relations given as follows™);

2u n
2

oL
1A K) (a+bn)
2uy_ B L n
Ty =% [a(1+n)]

with appropriate a and b value from this
research.

3.2 Calculation of Geometric
Parameters

From Eq. (32),

arb=Dte AL LA dp
u

P ;i;)] (34)

in which the force balance equation (Eq. (28))
has been substituted for ..
For the case of a unit element between the
cylinders (see Fig. 2),
A=f [ty grgpe Ly L (S Ty
rQ 293y 6

: triangular array

1 S oW
_[ w6 [srcose — . 2r(2y2
A Jo Iro r drd6 270 [( 7'0) 4]
: square array
where  P=ry0,, 6, = —z— : triangular array
T
6y = 1 : square array

Besides, the values of u, have been obtained
previously, so that the numerical values of
(a+b) can be calculated. From Eq. (32) and (33),

(35)

From Eq. (35), the numerical values of ( b/a )
can be easily evaluated from the values of u,
and & previously obtained.

Finally, Eq. (34) and Eq. (35) are solved
simultaneously for a and b. The obtained
values of a and b are plotted as a function of
porosity and as a function of s/r, on Fig. 8.

4. RESULTS AND DISCUSSION

The present numerical calculations
generalized the Mooney-Rabinowitsch equation
to handle various non-circular geometries. Eq.

(20) was written in terms of two geometric

(1044)
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4
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Fig. 8 Geometric Parameter ( a and b ) vs.

Porosity and %0
constants “a” and “b”, then suggested a
generalization by defining an averaged wall
shear stress for any shape of cross section. This
amounted to assuming the simple shear law
applied to arbitrary shear fields. All that is
required to calculate the values of “a” and “b”
from the solution for the same duct in laminar
fully developed Newtonian flow which has been
completely surveyed by Shah and London®,
and is now readily available. Values and
expressions for the estimation of geometric
parameters a and b, determined for the
different cross sectional shape of the duct. For
circular ducts a=0.25, b=0.75, and for parallel
plate ducts a=0.5, b=1.0. Irvine et al."® extended
the calculation a and b to eccentric annular,
rhombic ducts and even isosceles triangular
open channels. Tung!® presented a limited
experimental verification of Kozicki' s method
for the flow of a power law fluid in an isosceles
triangular duct with an apex angle of 11.5
degrees. Chang™ made a systematic experimental

study of the flow of power law fluid in an
isosceles triangular duct with an apex angle of
10 degrees. It was felt that such extreme
geometry with its widely varying values of local
wall shear stress around circumference would
show the Kozicki' s assumptions completely
good for the comparison. Table 4 lists values of
additional geometric parameters for a large
number of different duct cross sections®.

The present numerical results of geometric
parameters a and b for both triangular and
square arrays are listed on Table 5. It is easily
seen either from Fig. 8 or from Table 5 that a
and b become the same as the porosity gets
large. This is as expected, since at large
spacings, where there is litter effect of
neighboring rods, the flow passages of the two
arrays are almost geometrically similar.

Finally, an example is given to illustrate how
the results are used. The dimensionless
velocity for a power law fluid for which
FO=(t/k)™ will be evaluated.

Example : Evaluate the dimensionless mean
velocity for a steady state laminar power law
fluid between cylinders arranged in triangular
arrays of s/r,=1.1, s/r,=1 .

The mean velocity expression for power law
flow is given to be

) (a)

n, K’ “a+bn
in which
1 ol se ™
L _A_ 2 o [v‘3(0) "6
AT p "~ n
s
1 S (2 T
Bl -
- n
also,
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Table 4. Geometric Parameters for Duct Flows '@

Geometry a* a b
0.1 0.0445 0.9510
Concentric annuli 0.2 0.4693 0.9739
0.3 0.4817 0.9847
4 / 0.4 0.4890 0.9911
; 0.5 0.4935 0.9946
do Q o = _g_i 0.6 0.4965 0.9972
d; o 07 0.4983 0.9987
h j 0.8 0.4992 0.9994
) 0.9 0.4997 1.0000
1.0b 0.5000 1.0000
Rectangular 0.0 0.5000 1.0000
0.25 0.3212 0.8482
d gro 050 0.2440 0.7276
d o715 0.2178 0.6866
b C 5 1.00 0.2121 0.6772
0.00 0.3084 0.9253
Elliptical 0.10 0.3018 0.9053
0.20 0.2907 0.8720
0.30 0.2796 0.8389
d . 040 0.2702 0.8107
o= 050 0.2629 0.7886
0.60 0.2575 0.7725
0.70 0.2538 0.7614
0.80 0.2515 0.7546
C 0.90 0.2504 0.7510
1.00¢ 0.2500 0.7500

Isosceles triangular 2¢ 4

10 0.1547 0.6278
20 0.1693 0.6332
40 0.1840 0.6422
2 (P 60 0.1875 0.6462
80 0.1849 0.6438
90 0.1830 0.6395
Regular polygon (N sides) ; 02191 06771
5 0.2245 0.6966
6 0.2316 0.7092
8 0.2391 0.7241

a Data from "™
b Parallel plates

¢ Circle

(1046)
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Table 5. Numerical Values of Geometric Parameters

Triangular Square

s/ry a b sir, a b

4.00 1.98 3.00 4.00 2.02 3.34
2.00 0.86 1.59 2.00 0.79 1.73
1.50 0.61 1.33 1.50 0.49 1.36
1.20 0.39 1.17 1.20 0.25 1.01
1.10 0.27 1.00 1.10 0.18 0.74
1.05 0.18 0.78 1.05 0.13 0.55

1.04 0.16 0.71 1.00 0.09 0.32

1.03 0.14 0.62

1.02 0.12 0.53

1.01 0.10 0.43

1.00 0.08 0.31

d, A
T, = d—xp )—( 2. )

Substituting this into Eq. (a),

2u 1 n
n, X 1 dp)}l L a+bn
K dx
211 n S M. Llu
REE RN a+bn{z[3<7;>‘e”"
o (b)

The term on the left hand side of Eq. (b) is
defined as the dimensionless mean velocity and
can be easily obtained as follows :

(1) assumen =0.5

for s/r=1.1: a =027

b=1.00

substituting into the right hand side of Eq.

(b),
2u

(Ti;;:()—,ll =0.003
K dx
for s/ry= a =0.08
b=0.31

Substituting the values of n, s/r,, @ and b into
the right hand side of Eq. (b) gives :

2u
1 dp)n (,.),1:"1 =0.0003
K dx

(2) assume n = 0.8
for s/r=1.1 : a=0.27
b=1.00
Substituting the values of n, s/r,, @ and b into
Eq. (b),

2u

1 dp)n . ) =0.013

"K dx
for s/ry=1: a =0.08
b=0.31

Again from Eq. (b),

5. CONCLUSION

Considerable interest has evolved in the flow
of non-Newtonian fluids in channels of
noncircular cross section in compact heat
exchangers. Analytical solution was developed
for prediction of the flow rate and maximum
velocity in steady laminar flow of any
incompressible, time-independent non-
Newtonian fluids in straight closed and open
channels of arbitrary, but axially unchanging
cross section. The geometric parameters and
function of shear stress describing the behavior
of the fluid model were evaluated for flow
between a bundle of rods arranged in
triangular and square arrays for which the
necessary data was available. Examples have
been given to illustrate the usefulness and
applicability of the present analytical method.
The present method can be utilized equally to
the complex flow situations such as arbitrarily
cross-sectional flow geometry. The geometric
parameters may be calculated in such
situations from the simple power law fluid

type.
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The general flow rate equation was
integrated to show the utility of the general
result and to present relationships for a plenty
of fluids of interest to engineers. The product of
Fanning friction factor and Reynolds number
were also estimated in order to apply to the
flow situations of the present interest such as
channels arranged in triangular and square
arrays as well as to time-independent non-
Newtonian fluids. A single equation is valid
enough to consider the relationship existing in
the laminar flow region between the Fanning
friction factor and the new generalized
Reynolds number, Re*, f=16/Re*. Numerical
values of dimensionless maximum velocities,
mean velocities, pressure-drop-flow parameters
and friction factors were evaluated as a
function of porosity and pitch-to-radius ratio.
Conclusively, the methods applied make it
possible to characterize and represent
guantitatively the geometry of the flow
situation in evaluations of the pressure
gradient and mean velocity or maximum

velocity
NOMENCLATURE
A . flow cross-sectional area
a :geometric parameter
b  :geometric parameter
d :diameter of rod
P :wetted perimeter
@ :volume flow rate
r  :radius
r, :radius of rod
r,  :hydraulic radius
K :fluid index for power law fluid
s : half pitch of rod array
u :axial velocity

u, :axial maximum velocity

&1

: axial mean velocity

A4 3 ©O @ 8

A

10.
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: axial position

: porosity

: density of fluid

: absolute viscosity

: non-Newtonian viscosity
: shear stress

» . mean shear stress at the wall

: yield stress
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