Peptide Amidation: Production of Peptide Hormones in vivo and in vitro

  • Kim, Kyun-Hwan (Department of Biotechnology, College of engineering and Bioproducts Research Center Yonsei University) ;
  • Baik L. Seong (Protheon Inc., 134 Shinchon-Dong, Seodaemun-Gu Seoul 120-749)
  • Published : 2001.07.01

Abstract

Over half of all biologically active peptide and peptide hormones are $\alpha$-amidated at their C-terminus, which is essential for their full biological activities. Amidation is accomplished through the sequential reaction of the two enzymes encoded by the single bifunctional, peptidyl-glycine $\alpha$-amidating monooxygenase (PAM or an $\alpha$-amidating enzyme). PAM catalyze the forma - tion of a peptide amide from peptide precursors that include a C-terminal glycine, and requires copper molecular oxygen and ascorbate. PAM is the only enzyme that produces peptide amides in vivo. However various strategies utilizing PAM, carboxypeptidase-Y enzymes, and chemical syn-thesis have been developed for producing peptide amides in vitro. The growing need and impor-tance of peptide amide drugs has highlighted the necessity for a efficient in vitro amidating sys-tem for industrial application for the production of peptide hormones, like calcitonin and oxytocin. This review presents the current situation regarding amidation with a special emphasis on the in-dustrial production or peptide hormones.

Keywords

References

  1. FASEB J. v.8 Proteases and the emerging role of protease inhibitors in prohormone processing. Hook, V. Y.;A. V. Azaryan;S. R. Hwang;N. Tezapsidis
  2. Mechanisms of Intracellular Trafficking and Processing of Prohormones. Processing of pro-peptides: Glycosylation, phosphorylation, sulfation, acetylation and amidation. Bennett, H. P. J.;A. F. Bradbury;W. B. Hutter;Y. P. Loh(ed.)
  3. Annu. Rev. Physiol. v.50 Peptide alphaamidation. Eipper, B. A.;R. E. Mains
  4. Annu. Rev. Neurosci. v.15 The biosynthesis of neuropeptides: peptide alpha-amidation. Eipper, B. A.;D. A. Stoffers;R. E. Mains
  5. Nature v.298 Mechanism of C-terminal amide formation by pituitary enzymes. Bradbury, A. F.;M. D. Finnie;D. G. Smyth
  6. J. Biol. Chem. v.266 Peptidyl-alphahydroxyglycine alpha-amidating lyase: Purification, characterization, and expression. Eipper, B. A.;S. N. Perkins;E. J. Husten;R. C. Johnson;H. T. Keutmann;R. E. Mains
  7. Biochem. Biophys. Res. Commun. v.171 The 108-kDA peptidylglycine alpha-amidating monooxygenase precursor contains two separable enzymatic activities involved in peptide amidation. Perkins, S. N.;E. J. Husten;B. A. Eipper
  8. Biochem. Biophys. Res. Commun. v.169 Peptidylglycine alpha-amidating reaction: evidence for a two-step mechanism involving a stable intermediate at neutral pH. Takahashi, K.;H. Okamoto;H. Seino;M. Noguchi
  9. J. Biol. Chem. v.266 The membranebound bifunctional peptidylglycine alpha-amidating monooxygenase protein. Exploration of its domain structure through limited proteolysis. Husten, E. J.;E. A. Eipper
  10. J. Biol. Chem. v.267 Alternative splicing and endoproteolytic processing generate tissue-specific forms of pituitary peptidylglycine alpha-amidating monooxygenase (PAM). Eipper, B. A.;C. B. Green;T. A. Campbell;D. A. Stoffers;H. T. Keutmann;R. E. Mains;L. Ouafik
  11. Cell Mol. Life Sci. v.57 New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Prigge, S. T.;R. E. Mains;B. A. Eipper;L. M. Amzel
  12. Protein Sci. v.2 Peptidylglycine alpha-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains. Eipper, B. A.;S. L. Milgram;E. J. Husten;H. Y. Yun;R. E. Mains
  13. Biochem. Biophys. Res. Commun. v.184 Peptide amidating enzymes are present in cultured endothelial cells. Oldham, C. D.;C. Li;P. R. Girard;R. M. Nerem;S. W. May
  14. J. Histochem. Cytochem. v.44 Distribution of peptidyl-glycine alpha-amidating monooxygenase (PAM) enzymes in normal human lung and in lung epithelial tumors. Saldise, L.;A. Martinez;L. M. Montuenga;A. Treston;D. R. Springall;J. M. Polak;J. J. Vazquez
  15. J. Pharmacol. Exp. Ther. v.280 Antiinflammatory and analgesic activity of an inhibitor of neuropeptide amidation. Ogonowski, A. A.;S. W. May;A. B. Moore;L. T. Barrett;C. L. O’Bryant;S. H. Pollock
  16. Brain Res. v.569 Heterogeneous expression of carboxypeptidase E and proenkephalin mRNAs by cultured astrocytes. Klein, R. S.;L. D. Fricker
  17. Soc. Neurosci. 29th Ann. Mtg. Abst. v.428 Expression of PAM and amidated neuropeptides in developing and adult rat olfactory epithelium. Jaworsky, D. E.;B. A. Eipper;G. V. Ronnett
  18. J. Neurosci. v.17 Neuropeptide amidation in Drosophila: separate genes encode the two enzymes catalyzing amidation. Kolhekar, A. S.;M. S. Roberts;N. Jiang;R. C. Johnson;R. E. Mains;B. A. Eipper;P. H. Taghert
  19. Appl. Immunohistochem. v.6 Peptidylglycine alpha-amidating monooxygenase in neuroendocrine tumors. Scopsi, L.;R. Lee;M. Gullo;P. Collini;E. J. Husten;B. A. Eipper
  20. Mol. Endocrinol. v.6 The multifunctional peptidylglycine alphaamidating monooxygenase gene: exon/intron organization of catalytic, processing, and routing domains. Ouafik, L. H.;D. A. Stoffers;T. A. Campbell;R. C. Johnson;B. T. Bloomquist;R. E. Mains;B. A. Eipper
  21. J. Biol. Chem. v.266 Characterization of novel mRNAs encoding enzymes involved in peptide alpha-amidation. Stoffers, D. A.;L. Ouafik;B. A. Eipper
  22. Arch. Biochem. Biophys. v.312 Purification and characterization of PAM-1, an integral membrane protein involved in peptide processing. Husten, E. J.;B. A. Eipper
  23. Science. v.278 Amidation of bioactive peptides: the structure of peptidylglycine alpha-hydroxylating monooxygenase. Prigge, S. T.;A. B. Kolhekar;B. A. Eipper;R. E. Mains;L. M. Amzel
  24. J. Am. Chem. Soc. v.115 Redox cycling of enzyme-bound copper during peptide amidation. Freeman, J. C. I. J. Villafranca;D. J. Merkler
  25. Nat. Struct. Biol. v.6 Substrate-mediated electron transfer in peptidylglycine alpha-hydroxylating monooxygenase. Prigge, S. T.;A. S. Kolhekar;B. A. Eipper;R. E. Mains;L. M. Amzel
  26. J. Cell Biol. v.101 Secretory protein targeting in a pituitary cell line: differential transport of foreign secretory proteins to distinct secretory pathways. Moore, H. P.;R. B. Kelly
  27. Endocrinology v.127 Cell-type specific posttranslational processing of peptides by different pituitary cell lines. Dickerson, I. M.;R. E. Mains
  28. Protein Expr. Purif. v.7 An expression system for the single-step production of recombinant human amidated calcitonin. Merli, S.;S. De Falco;A. Verdoliva;M. Tortora;M. Villain;P. Silvi;G. Cassani;G. Fassina
  29. Peptides. v.18 Production of bioactive salmon calcitonin from the nonendocrine cell lines COS-7 and CHO. Takahashi, K. I.;Y. C. Liu;N. Hayashi;F. Goto;M. Kato;H. Kawashima;T. Takeuchi
  30. FEBS Lett. v.337 Production of bioactive gastrin from the non-endocrine cell lines CHO and COS-7. Hayashi, N.;T. Kayo;K. Sugano;T. Takeuchi
  31. Biochem. Biophys. Res. Commun. v.148 Cloning and sequence of cDNA encoding a peptide C-terminal alpha-amidating enzyme from Xenopus laevis. Mizuno, K.;K. Ohsuye;Y. Wada;K. Fuchimura;S. Tanaka;H. Matsuo
  32. Biochem. Biophys. Res. Commun. v.150 Cloning of cDNA encoding a new peptide C-terminal alpha-amidating enzyme having a putative membrane-spanning domain from Xenopus laevis skin. Ohsuye, K.;K. Kitano;Y. Wada;K. Fuchimura;S. Tanaka;K. Mizuno, H.;H. Matsuo
  33. Arch. Biochem. Biophys. v.298 Characterization of a bifunctional peptidylglycine alpha-amidating enzyme expressed in Chinese hamster ovary cells. Miller, D. A.;K. U. Sayad;R. Kulathila;G. A. Beaudry;D. J. Merkler;A. H. Bertelsen
  34. Biotechnology (N Y). v.11 Production of recombinant salmon calcitonin by in vitro amidation of an Escherichia coli produced precursor peptide. Ray, M. V.;D. P. Van;A. H. Bertelsen;D. E. Jackson-Matthews;A. M. Sturmer;D. J. Merkler;A. P. Consalvo;S. D. Young;J. P. Gilligan;P. P. Shields
  35. Pept. Res. v.5 C-terminal amidation of calcitonin by carboxypeptidase Y catalyzed transpeptidation with a photocleavable nucleophile. Henriksen, D. B.;M. Rolland;M. H. Jakobsen;O. Buchard;K. Breddam
  36. Int. J. Pept. Protein Res. v.41 Peptide amidation by enzymatic transacylation and photolysis. Henriksen, D. B.;K. Breddam;O. Buchardt
  37. Int. J. Pept. Protein Res. v.37 Amidation of growth hormone releasing factor (1-29) by serine carboxypeptidase catalysed transpeptidation. Breddam, K.;F. Widmer;M. Meldal
  38. Biomed. Biochim. Acta. v.50 Comparison of enzymatic semisyntheses of peptide amides: human growth hormone releasing factor and analogs. Bongers, J.;R. E. Offord;A. M. Felix;T. Lambros;W. Liu;M. Ahmad;R. M. Campbell;E. P. Heimer
  39. Int. J. Pept. Protein Res. v.44 Peptide synthesis catalyzed by the Glu/Asp-specific endopeptidase. Influence of the ester leaving group of the acyl donor on yield and catalytic efficiency. Bongers, J.;W. Liu;T. Lambros;K. Breddam;R. M. Campbell;A. M. Felix;E. P. Heimer
  40. Biochem. Biophys. Res. Commun. v.267 Production of recombinant salmon calcitonin by amidation of precursor peptide using enzymatic transacylation and photolysis in vitro. Hong, D.;M. Zhuang;M. Li;C. Chen;J. Mao
  41. PCT Int. Appl. WO 9,626,955. Solution phase synthesis of immunoregulating peptides. Vladislav, D. V.;K. A. Marxovich
  42. Int. J. Peptide Protein Res. v.30 An acid-labile anchoring linkage for solid-phase synthesis of C-terminal peptide amides under mild conditions. Fernando, A.;G. Barany
  43. J. Org. Chem. v.41 Study of benzhydrylamine-type polymers. Synthesis and use of ρ-methoxybenzhydrylamine resin in the solid-phase preparation of peptides. Orlowski, R. C.;R. Walter;D. Winkler
  44. Tetrahedron Lett. v.28 Solid-phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methyl ester resin. Rink, H.
  45. J. Am. Chem. Soc. v.121 Synthesis of a glycopeptide containing oligosaccharides: Chemoenzymatic synthesis of eel calcitonin analogues having natural N-linked oligosaccharides. Mizuno, M.;H. Katsuji;I. Reiko;M. Ikuyo;K. Toru;A. Saburo;Y. Kenji;J. Toshiyuki
  46. Peptides v.21 Synthesis and biological activity of adipokinetic hormone analogues with modifications in the 4-8 region. Velentza, A.;S. Spiliou;C. P. Poulos;G. J. Goldsworthy
  47. Tetrhedron Lett. v.42 Solid-phase synthesis of amino amides and peptide amides with unnatural side chains. Scott, W. L.;D. Francisca;L. Karen;S. P. Richard;J. O. Martin
  48. J. Org. Chem. v.61 Preparation and application of xanthenylamide(XAL) handles for solid-phase synthesis of C-terminal peptide amides under particularly mild conditions. Han, Y.;S. L. Bontems;P. Hegyes;M. C. Munson;C. A. Minor;S. A. Kates;F. Albericio;G. Barany
  49. J. Pept. Sci. v.6 Solid phase synthesis of C-terminal peptide amides: development of a new aminoethyl-polystyrene analogs. Bui, C. T.;A. M. Bray;T. Nguyen;F. Ercole;N. J. Maeji
  50. Methods Enzymol. v.279 Peptidylglycine alpha-amidating monooxygenase: an ascorbate-requiring enzyme. Kolhekar, A. S.;R. E. Mains;B. A. Eipper
  51. Competing Successfully in Biotechnology: Future Opportunities in Therapeutic Proteins. Datamonitor
  52. J. Endo. Inv. v.5 Calcitonin: Perspectives in current concepts. Wolfe, H. J.
  53. Exp. Gerontol. v.25 The concept and treatment of osteoporosis. Rittinghaus, E. F.;R. D. Hesch;H. M. Harms;U. Busch;M. Prokop;G. Delling
  54. J. Clin. Endocrinol. Metab. v.72 Dose-response bioactivity and bioavailability of salmon calcitonin in premenopausal anchoring Overgaard, K.;D. Agnusdei;M. A. Hansen;E. Maioli;C. Christiansen;C. Gennari
  55. US Patent 5,821,083. Recombinant C-terminal alpha-amidating enzyme. Ohsuye, K.;K. Kitano;S. Tanaka;H. Matsuo;K. Mizuno
  56. US Patent 4,709,014. Preparation of peptides with Cterminal proline amide. Tamaoki, H.
  57. US Patant 5,789,234. Expression systems for amidating enzyme. Bertelsen, A. H.;N. M. Mehta;G. A. Beaudry;J. P. Gilligan;B. N. Jones
  58. J. Pharmacol. Exp. Ther. v.280 Antiinflammatory and analgesic activity of an inhibitor of neuropeptide amidation. Ogonowski, A. A.;S. W. May;A. B. Moore;L. T. Barrett;C. L. O’Bryant;S. H. Pollock