Bull. Korean Math. Soc. 38 {(2001), No. 4, pp. 623-633

PRIME RADICALS OF FORMAL
POWER SERIES RINGS

CHAN HuH, HonG KEE KiM, DONG Su LEE, AND YANG LEE

ABSTRACT. In this note we study the prime radicals of formal
power series rings, and the shapes of them under the condition
that the prime radical is nilpotent. Furthermore we observe the
condition structurally, adding related examples to the situations
that occur naturally in the process.

1. Formal power series rings

Throughout this paper all rings are associative with identity. Given
a ring R, the prime radical is denoted by P(R); the polynomial ring
and the formal power series ring over R are denoted by R[z] and R|[[z]]
with z the indeterminate, respectively; also R[X] and R[[X]] denote the
polynomial ring and the formal power series ring over R with X a set of
commuting indeterminates (possibly infinite) over R, respectively.

In this section we obtain some informations for the prime radicals of
formal power series rings.

THEOREM 1.1.. Given a ring R, the following conditions are equiva-
lent:
(1) R is semiprime.
(2) R[X] is semiprime.
(3) R[|X]] is semiprime.

Proof. (1)<(2): By the well-known fact that P(R[X]) = P(R)[X].
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(1)=(3): First we introduce some notations and terminologies for
simpler computations. Suppose X = {z, | @ € A}, and we may assume
that A is a well-ordered set. Let N be the set of positive integers, and
for any nonempty finite subset I = {(a,m1), (@2, mya), ..., (cr, m,)} of
A x N, define the monomial X! by

XTI = TolThr T (01 <o <--- < ap) and X% =15.

We give terminologies to I as follows:
deg(I) = my +mg + -+ + m,: the degree of X!, and
|I} = r: the number of elements of I.

Next for two nonempty finite subsets I = {(ay,m1), (a2, m2), ...,
(ar,my)} and J = {(B1,n1), (B2,m2), ..., (Bs,ns)}, we write I < J if
one of the following four conditions holds:

(I) deg() < deg(J),

(IT) deg(I) =deg(J) and [I| < [J],

(IIT) deg(I) = deg(J),|I| = |J|, and there exists a positive integer k
such that a; = §;,m; = n,; for all i <k, and ay41 < Bra1, and

(IV) deg(I) = deg(J),|I| = |J|, and there exists a positive integer k
such that oy = B;,m; = n; for all ¢ < k, and o1 = Bry1 with
Mg4+1 > N1

For any finite subsets I and J of A x N, set I +.J be the finite subset
with X+ = XTX7. Then it is clear that for any nonempty finite
subsets I, J and K of A x N,

(I) if I < J and J < K then I < K, and
let

(II) if I < Jthen I + K < J+ K, in particular 2] = I + I < T+ J.

Notice that every nonzero power series f in R[[X]] is of the form

co
f =ag + ZGIHXI”,

n=1

where ag,ay, € R and each I, is a finite subset of A x N with I,, < I, 41
for all n > 1. Now we claim fRf # 0. This is true if ag # 0 since R is
semiprime, so we assume ag = 0. Without loss of generality, we may let
ar, # 0. Note that

2 =L +5L <IL,+1,

for all positive integers p,q with p + ¢ > 2, hence the coefficient of the
term X2/ in fuf, with u € R, is aj,uay,. Therefore we have fRf # 0,
this completes the claim.
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Let f € R[[X]] with fR[[X]]f = 0, then clearly fRf = 0. By the
claim we have f = 0, and so R[[X]] is semiprime.

(3)=(1): Let a € R with aRa = 0. Then clearly aR[[X]]a = 0,
but R[[X]] is semiprime by the condition and we get a = 0; hence R is
semiprime. |

CoroLLARY 1.2. Given a ring R, P(R[[X]]) C P(R)[[X]].

Proof. Note that (R/P(R))[[X]] is semiprime by Theorem 1.1. Since
R/P(R)[[X]] = R[[X]]/P(R)|[X]] and the prime radical is the smallest
such one, we have P(R[[X]]) C P(R)[[X]]. a

The inclusion in Corollary 1.2 may be strict by the following.

EXAMPLE 1.3. Let F be a field and let V' be a infinite dimensional
left vector space over F with {vy,vs, ...} a basis. For the endomorphism
ring A = Endp(V'), define

J={f € A|rank(f) < oo and f(v;) € szj}.

Jj<i

Let R be the F-subalgebra of A generated by J and 14. This is just the
ring mentioned in [7, Example 2.7.38]. Note that every element in J is
strongly nilpotent in R and R/J = F, then P(R) = J, that is, P(R)
contains all nilpotent elements in R. Moreover every element in J is also
strongly nilpotent in R[[z]], hence P(R)[z] C P(R][[z]]). Let e;; be the
infinite matrix over F' with (%, j)-entry 1 and elsewhere 0. Take

f(-T) =egt+exqr+ -+ e(2n+1)(2n+2)x" 4+ ..

and
g(l') =eo3 t e+ -+ e(2n+2)(2n+3)£l7n + -

in P(R)[[z]]. Then f(z)? = 0 = g(z)?; but the coefficients of (f(x) +
g(z))* are

€1(k+1)» 62(k+2), ce ,en(k_,_n), ... for k= 2, 3, ey

and so it is not nilpotent. Therefore f(z) ¢ P(R|[[z]]) or g(z) ¢ P(R|[[z]]),
it then follows P(R)[[z]] € P(R][z]])-

We obtain a condition for which the converse of Corollary 1.2 may be
true.
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COROLLARY 1.4. Given a ring R, P(R) is nilpotent if and only if so
is P(R[[X]]) with P(R[[X]]) = P(R)[[X]].

Proof. <: Obvious. =: Since P(R) is nilpotent, P(R)[[X]] is also
nilpotent and so P(R)[[X]] € P(R[[X]]). By Corollary 1.2, we have
P(R[[X]]) = P(R)[[X]] and then it is nilpotent. O

Based on Corollary 1.4, we observe the condition, that P(R) is nilpo-
tent, further in the next section.

2. Nilpotent prime radicals

Given a ring R, consider the condition: (*) P(R) is nilpotent. This is
a Morita invariant property as we see later in this section, and we study
the prime radicals of formal power series rings with this condition. A
ring with finite right Krull dimension satisfies (*) by [5]; and a ring,
which is right Goldie or satisfies ascending chain condition on both right
and left annihilators, satisfies (*) by [4] and [1, Theorem 1.34]. First we
may obtain the following directly by [3, Corollary 3.2.2].

LEMMA 2.1. Given a ring R the following statements are equivalent:
) R satisfies (*).

) P(R) is the largest nilpotent one-sided ideal in R.

) P(R) is the only nilpotent semiprime ideal in R.

) R contains a nilpotent semiprime ideal.

(1
(2
(3
(4
PROPOSITION 2.2. Suppose that a ring R satisfies (*). Then we have
the following assertions:

(1) eRe satisfies (*) for each nonzero idempotent e € R.

(2) The n by n full matrix ring Mat,,(R) over R satisfies (*) for any
positive integer n.

Proof. (1) Let S be a nilpotent semiprime ideal of R. Then clearly
eSe g eRe. Letting eaeReae C eSe with a € R, we have eae € § and so
eae € eSe. Since eSe is a nilpotent semiprime ideal of eRe, e Re satisfies
(*) by Lemma 2.1.

(2) Note that P(mat,(R)) = mat, (P(R)), so Mat,, (R) satisfies (*).0

COROLLARY 2.3. Suppose that a ring R satisfies (*). Then for ev-
ery finitely generated projective right R-module P, Endg(P) satisfies
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(*); especially the condition (*) is a Morita invariant property, where
Endg(P) is the endomorphism ring of P over R.

Proof. Note that Endg(P) & eMat,(R)e for some e? = e € Mat,,(R)
and some positive integer n. So we obtain the results from Proposition
2.2, O

LEMMA 2.4. Let Ry, Ry, ..., R, berings and R = ®]_R;. Then R
satisfies (*) if and only if R; satisfies (*) for all i.

Proof. By the fact that P(R) = &, P(R;). ' O
Given a ring R, Spec(R) represents the set of all prime ideals in R.

LEMMA 2.5. Let R be a ring, and e = e? € R withe # 0 and e # 1.
Then we have the following assertions:
(1) P(eRe) = eP(R)e.
(2) If R is semiprime then so is eRe.

Proof. For any prime ideal P of R, note that either ePe = eRe or
ePe is a prime ideal of eRe. So we have P(eRe) C eP(R)e since eP(R)e
= e(Npespec(rR)P)e = Npespec(r)ePe. Next let a € P(R), then eae is
strongly nilpotent in R and also is in eRe; hence eae € P(eRe) and
eP(R)e C P(eRe). So we prove (1), and (2) follows immediately. O

PROPOSITION 2.6. Let R be a ring, and e = € € R with e # 0 and
e # 1. Then R satisfies (*) if and only if both eRe and (1 — e)R(1 — e)
satisfy (*).

Proof. =: By Lemma 2.5(1). <«: Let @ = P(R). Then eQe =
P(eRe) and (1—-€)Q(1—e) = P((1—e)R(1—e)) by Lemma 2.5(1); hence
eQe and (1 —€)Q(1 — e) are nilpotent by the conditions. It then follows
that e@ and (1 — €)@ are also nilpotent, say (eQ)™ =0 = ((1 — e)Q)"
for some positive integer n. Notice that Q2" "2 = (eQ + (1 —€)Q)?"+? is
the sum of terms of the form (eQ)" ((1 — e)Q)7t --- (eQ)*™ ((1 — €)@)I™
with 370, (ix + jk) = 2n + 2, and that each of this term is contained
in either (eQ)"*! of ((i — e)Q)™*!. Consequently Q@ = eQ + (1 —e)Q is
nilpotent. O

COROLLARY 2.7. For a ring R and a positive integer n, the following
statements are equivalent:
(1) R satisfies (*).
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(2) The n by n full matrix ring over R satisfies (*).
(3) The n by n upper triangular matrix ring over R satisfies (*).
(4) The n by n lower triangular matrix ring over R satisfies (*).

)
Proof. (1)<(2): By Proposition 2.2(2) and the fact P(Mat,(R)) =
Mat,, (P(R)).
(1)<(3): Let U be the n by n upper triangular matrix ring over R.
Consider an ideal

@11 G122 @13 - Qin
0 a99 Qg3 -  QAgp

I= 0 0 asz -+ asn | a;; € P(R) and a;; € Rwith ¢ # j
O 0 0 e Ann

in U. Say P(R)* = 0, then I**" = 0 and U/I & @7 ,R; with R; =
R/P(R) for all i. So U contains a nilpotent semiprime ideal, hence satis-

10 --- 0
00 --- 0
fies (*) by Lemma 2.1. For the converse, considere= | . . . .|,
00 --- 0
then R = eUe and so R satisfies (*) by Proposition 2.2(1).
(1)<(4): Similar to the proof of (1)< (3). O

By these results one may conjecture that subrings of given a ring
R also satisfy (*) if R satisfies (*). However the following erases the
possibility.

ExAMPLE 2.8. Let F' be a field. For each positive integer n, let R,
be the n by n full matrix ring over F. Set R be the F-subalgebra of
the direct product H;'Ozl R,, generated by the direct sum &5, R,, and
1=, r,- Then P(R) = @72, P(R,) = 0. Next let S be the subring
of R generated by the direct sum of n by n upper triangular matrix
rings, say Sy, for all n and 1fj= g,. Then P(S) = @72, P(S,) is not
nilpotent since

0 F F F F

0o 0 F --- F F
PS)=1: + + ... ¢+ | foralln.

0 0 0 0 F

0 0 O 0 0
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As a byproduct of [[".; S, in Example 2.8, the condition (*) is not
closed for direct products.

In the following process, we may show that the condition (*) is some-
what meaningful to study. Indeed, we obtain the converse process of
the previous one, from Theorem 1.1 to Corollary 1.4, by the following
Theorem 2.9 and Corollary 2.10.

THEOREM 2.9. Given a ring R we have the following assertions:
(1) R satisfies (*) if and only if R[X] satisfies (*).
(2) R satisfies (*) if and only if R[[X]| satisfies (*) with P(R[[X]])
= P(R) [[X]].

Proof. (1) By the well-known fact P(R[X]) = P(R)[X].

(2) First consider the case of R[[z]], i.e., |X| = 1. Since P(R) is
nilpotent, P(R)[[z]] is also nilpotent and so P(R)[[z]] C P(R|[[z]]). Let
f(z) = ap + a1z + asx? + - -+ € P(R[[z]]). Consider the epimorphism
7 : R[[z]] — R with m(g(z)) = ¢(0). For each prime ideal P of R,
7~ 1(P) is a prime ideal of R[[z]] and so #~1(P) contains f(z). Since
7n(f(z)) = ap € P, we have ag € P(R) C P(R)|[[z]] € P(R|[[z]]); hence
a1x + axz? + --- € P(R[[z]]), and a; + asx + --- € P(R[[z]]). In the
same manner, we also obtain that a; € P(R) and a3 + azz + -+ €
P(R[[z]]). Inductively every a; is in P(R), i.e., P(R[[z]]) C P(R)[[z]];
hence P(R[[z]]) = P(R)[[z]]. So R|[z]] satisfies (*). By this result, when
| X| is finite we have that P(R[[X]]) = P(R)[[X]] and R[[X]] satisfies
(*), inductively.

Next consider the general case. Since P(R) is nilpotent, P(R)[[X]]
is also nilpotent and so P(R)[[X]] C P(R [[X]]) Let f(X) = ap +
1211212 Tin, T G2T21T22°** Top, + + ¢ ( [X]]) with a; € R.
Consider the epimorphism p : R[[X]] — R w1th p(g(X)) the constant
term of g(X). For each prime ideal S of R, p~1(S) is a prime ideal of

R[[X]] and so p~!(S) contains f(X). Since p(f(X)) = ag € S, we have
ag € P(R) C P(R)[[X]] € P(R[[X]]); hence

1211212 - Tin, + A2T21 %22 - - Ton, + - - € P(R[[X]]).
LetY =X - {Illy T12, ", ‘Tlnl}- Then
R[[X]] = R[[z11, %12, - , T1n, JJ[[Y]]-

Define another epimorphism II : R[[X]] — R[[z11,Z12,  ,Z1n,]] by
II(bo + bryr1yi2 - Yim, +bay21y22 - Yom, + ) = bo for y;; € Y and
by € R[[z11, %12, , Z1n,]]-
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For each prime ideal @ of R|[[z11,%12, " ,T1n,]], I }(Q) is a prime
ideal of R[[X]] and so II71(Q) contains a; T11 Tia -+ T1n, +G2 To1 Too
* Tonp, +---. Notice

P(R[[z11,212,"+ ,T1n,]]) = P(R)[[z11, 212, -+, T1n, )]
by the previous argument. Since

H(011301151012 o Tip; + Q2T T22 0 Top, + - ) = Q171112 Tin; € Q,

we'have

a1T11%12 - T1p, € P(R)[[z11, %12, -, T1n, )5
hence a; is also contained in P(R). Next consider R[[x21, 22, , T2n,]],
R[[z31,%32, -+ , T3n,)], and so on. Proceeding in this method, we induc-

tively obtain that every a; is contained in P(R) and f(X) € P(R)[[X]];
hence P(R[[X]]) = P(R)[[X]]. Therefore R[[X]] satisfies (*). The con-
verse is obvious. g

COROLLARY 2.10. Given a ring R, we have the following assertions:
(1) R issemiprime if and only if R[X| is semiprime if and only if R[[X]]
is semiprime.

(2) P(R[X]]) € P(R)[[X]).

Proof. (1) Theorem 2.9 applies with the condition of P(R) = 0. From
(1), we have the result (2) by the same proof as Corollary 1.2. O

A subset I of aring R is called left (right) T-nilpotent provided that
for every sequence aj,asq,... in I there is a positive integer n such that
a1az---an = 0 (an ---aza; = 0). Nilpotent subsets of a ring are both
right and left T-nilpotent obviously but the converse does not hold in
general by [7, Example 2.7.38]. Left (right) T-nilpotent subsets are nil,
but nil ideals need not be right (or left) T-nilpotent by [7, Example
2.7.38]; and T-nilpotence is not left-right symmetric also by [7, Example
2.7.38]. The following example shows that Theorem 2.9(2) does not hold
in general for the T-nilpotence.

EXAMPLE 2.11. We use the ring R in Example 1.3. Note that P(R)
is right T-nilpotent. P(R)[[z]] € P(R][[z]]) by the argument in Example
1.3.
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COROLLARY 2.12. Suppose that a ring R satisfies ascending chain
condition on right annihilators. Then we have the following assertions:
(1) P(R) is right T-nilpotent if and only if R satisfies (*) if and only
if R[X] satisfies (*).
(2) P(R) is right T-nilpotent if and only if R satisfies (*) if and only
if R[[X]] satisfies (*) with P(R[[X]]) = P(R)[[X]].

Proof. (1) By Theorem 2.9 and [1, Lemma 1.33]. 0O

A ring is called reduced if it has no nonzero nilpotent elements. The
indez of nilpotency of a nilpotent element z in a ring R is the least
positive integer n such that ™ = 0. The index of nilpotency of a subset
I of R is the supremum of the indices of nilpotency of all nilpotent
elements in I. If such a supremum is finite, then I is said to be of
bounded index of nilpotency. Given a ring R, the set of all nilpotent
elements is denoted by N(R). The ring R in Example 2.11 is not of
bounded index of nilpotency, but every nilpotent element generates a
nilpotent right ideal in R; so we check the following case.

PRrROPOSITION 2.13. Suppose that a ring R is of bounded index of
nilpotency.
(1) If every nilpotent element generates a nil right (or left) ideal in R,
then P(R) = N(R).
(2) If R satisfies (*) and every nilpotent element generates a nil right
ideal in R, then R[X]/P(R[X]) and R[[X]]/P(R[[X]]) are reduced

rings.

Proof. (1) First note that since R is of bounded index of nilpotency
by hypothesis and P(R) is nil, R/P(R) is also of bounded index of
nilpotency. So we may suppose that R is semiprime. Assume to the
contrary that there is 0 # a € N(R). Then aR is a nil right ideal
by the condition, set I = aR. Next since R is of bounded index of
nilpotency by hypothesis, there is the bounded index of nilpotency of
I, say n. By [2, Lemma 11], b 1Rb"! = 0 for all b € I, and then
(Rb""'R)? = 0; hence Rb""1R is a nonzero nilpotent ideal for some
b € I, a contradiction. Thus P(R) = N(R). The left case can be
obtained by the symmetry.

(2) Since R[X] / P(R) [X] = R/P(R) [X] and R[[X]] /P(R) [[X]] =
R/P(R) [[X]], we have the results by Theorem 2.9 and (1). O

Given a ring that satisfies (*), it is also natural to conjecture that
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every homomorphic image of it also satisfies (*). But it is not true in
general by the following.

EXAMPLE 2.14. Let K be a field and X = {z, | n = 1,2,...}
be a countably infinite set of commuting indeterminates over F. Set
R, = K{z,] for all n, and I, be the ideal of R, generated by z7'*!.
Next let R =[].2, R,. Then R is reduced and satisfies (*) obviously.
Define I =[], ; I,,, then I is an ideal of R with R/I = [~ R./I,.
Notice that R,z,/I, is a nilpotent ideal in R,, for every n, and so we
have

521 Rz /I € P([] Ru/In).

n=1

Note that @52, R,,/I, is not nilpotent, so P([]o—; R./I,) is not
nilpotent. Thus R/I does not satisfy (*).

In the following argument we may obtain a condition for which the
preceding conjecture holds.

PROPOSITION 2.15. Given a ring R, the following conditions are
equivalent:

(1) R satisfies (*).

(2) R/I satisfies (*) for every nilpotent ideal I.

(3) R/I satisfies (*) for some nilpotent ideal I.

(4) Every nonzero homomorphic image of R satisfies (*) with nilpotent
kernel.

(5) Some nonzero homomorphic image of R satisfies (*) with nilpotent
kernel.

Proof. (2)=(3) and (4)=-(5): Obvious. _

(1)=-(2): Note that I C P(R) since [ is nilpotent, and so P(R/I) =
P(R)/I; hence R/I satisfies (*) if R satisfies {*).

(2)=(4): Note that every nonzero homomorphic image of R is isomor-
phic to R/K with K the kernel, so (2) applies if the kernel is nilpotent.

(3)=(1): Note that

P(R/I) = Njespec(r),so1d/T = (Niespec(ry,721J)/1-

Since R/I satisﬁes'(*), P(R/I) is nilpotent and (N jespec(r),so1J)" € I
for some positive integer n. But I is nilpotent and so N jegpec(r), 71 is
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also nilpotent. Consequently Njespec(r),sorJ is a nilpotent semiprime

ideal in R, and thus R satisfies (*) by Lemma 2.1. ,
(5)=>(1): Let K be the nilpotent kernel, then R/K satisfies (*) by

the condition. The remainder of the proof is similar to one of (3)=(1).0

»

In Proposition 2.15, notice that the condition “nilpotent” is not su-
perfluous by the rings R in Examples 1.3, [6, Example 1.1}, and 2.14.
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