TOPOLOGICAL CHARACTERIZATIONS
OF CERTAIN LIMIT POINTS FOR MÖBIUS GROUPS

SUNGBOK HONG AND HAN-DOO KIM

ABSTRACT. A limit point p of a Möbius group acting on B^m is
called a concentration point if for every sufficiently small connected
open neighborhood of p, the set of translates contains a local basis
for the topology of p. For the case of two generator Schottky groups
acting on B^2, we give characterizations for several different kinds
of limit points.

1. Introduction

Let Γ be a discrete subgroup of hyperbolic isometries acting on the
Poincaré disc B^m, $m \geq 2$. The discrete group Γ acts properly discontinuously in B^m, and acts on ∂B^m as a group of conformal homeomorphisms, but need not act properly discontinuously on ∂B^m. The action of Γ divides ∂B^m into two sets. The ordinary set $\Omega(\Gamma)$ is the largest open subset of ∂B^m on which Γ acts discontinuously. The complement of $\Omega(\Gamma)$ in ∂B^m is the limit set, denoted by $\Lambda(\Gamma)$ or simply Λ. The limit set $\Lambda(\Gamma)$ is the set of accumulation points of the orbit $\Gamma(x)$ for one, hence for every, point $x \in B^m$. Equivalently, the limit set is the smallest nonempty closed set in ∂B^m on which Γ does not act discontinuously. If Λ contains two or fewer points, Γ is elementary, and contains a free abelian subgroup of finite index. Otherwise, Γ is nonelementary. In this paper, we always assume that Γ is nonelementary.

It is easy to see that $\Lambda(\Gamma) = \Lambda(\Gamma')$ for any nontrivial normal subgroup Γ' of Γ. Also, if x is any point of ∂B^m, then the accumulation points of any orbit of x under Γ lie in $\Lambda(\Gamma)$. For a nonelementary group Γ, define $CH(\Lambda)$ to be the smallest nonempty convex set in B^m which is invariant under the action of Γ; this is the convex hull of Γ. The

2000 Mathematics Subject Classification: 20H10, 30F35, 57M50.
Key words and phrases: concentration point, density point.
The first author is partially supported by Korea University.
boundary at infinity of $CH(\Lambda)$ is precisely Λ, and so $CH(\Lambda)$ contains every geodesic line in B^m both of whose endpoints at infinity are in Λ. By a neighborhood of p, we will always mean an open neighborhood of p in ∂B^m.

Definition. One says that a neighborhood U of p can be concentrated at p if for every neighborhood V of p, there exists an element $\gamma \in \Gamma$ such that $p \in \gamma(U)$ and $\gamma(U) \subset V$.

The limit point p is called a **concentration point** for Γ if there exists a neighborhood of W of p such that every neighborhood U of p with $U \subset W$ can be concentrated at p. If Γ is a Fuchsian group, a slight weaker concept than concentration point turns out to be important.

Definition. A limit point p is called a **geodesic separation point** for the Fuchsian group Γ if for every sufficiently small connected neighborhood U of p, either U or $S^1 - U$ can be concentrated at p.

A **weak concentration point** which is the weakest reasonable concept of concentration is characterized in [5]. Namely, the limit point p is a weak concentration point for Γ if there exists a connected open set U that can be concentrated at p. The main property is that if the limit set approaches a point from two different tangential directions in ∂B^m then it is a weak concentration point. This implies every limit point of a geometrically finite group must be a weak concentration point. A limit point p is called a **controlled concentration point** if it has a neighborhood U such that for every neighborhood V of p, there exists an element $\gamma \in \Gamma$ so that $p \in \gamma(U)$ and $\gamma(U) \subset V$. In the following sections, we will give characterizations for controlled concentration points and concentration points in the case of two generator Schottky groups.

Definition. One says that a pair of open sets (U_1, U_2) in ∂B^m is an **admissible pair** if
(a) $\overline{U_2} \subset U_1$,
(b) $U_2 \cap \Lambda \neq \emptyset$ and
(c) $\Lambda \not\subset U_1$.

One says that an admissible pair (U_1, U_2) can be concentrated at p if for every neighborhood V of p, there exists an element $\gamma \in \Gamma$ such that $p \in \gamma(U_2) \subset \gamma(U_1) \subset V$.

Definition. A geodesic λ is called a geodesic for Γ if both endpoints of λ are limit points of Γ. The limit point p is called a **Myrberg-Agard point**.
density point for Γ if whenever μ is an oriented geodesic for Γ and α is a geodesic ray ending at p in $CH(\Lambda)$ (convex hull of Λ), there is a sequence of elements $\{\gamma_i\}$ such that $\{\gamma_i(\alpha)\}$ converge to μ in an oriented sense.

Using the characterization of Theorem 4.1 in [3], one can easily see that every Myrberg-Agard density point is a controlled concentration point. The next theorem will be useful to get a characterization of Myrberg-Agard density points for a two generator Schottky group.

Theorem 1.1. A limit point p is a Myrberg-Agard density point for Γ if and only if every admissible pair (U_1, U_2) can be concentrated at p.

Proof. See Theorem 3.1 in [2]. \hfill \Box

2. Schottky groups and limit points

We will work with a 2-generator m-dimensional Schottky group Γ, although it will be apparent that the same phenomena occur for other examples (in particular, with more generators). The limit set of Γ is a Cantor set which can be understood quite explicitly using the sequence of crossings of a geodesic ray (ending at the limit point) with the translates of two fixed sides of a fundamental domain.

To define Γ, we work in the Poincaré unit disc B^m. Let a and a' be the geodesic hyperplanes in B^m which lie in the spheres in \mathbb{R}^m with centers at the points $(1.1,0,...,0)$ and $(-1.1,0,...,0)$, say. Similarly, let b and b' lie in the spheres with centers at the points $(0,...,0,1.1)$ and $(0,...,0,-1.1)$. Choose a, a', b, b' so that they are mutually disjoint. As the generators of Γ, select two orientation-preserving hyperbolic isometries: one carrying a to a' and one carrying b to b'. Fix one of the direction normal to a as the positive direction. It determines a positive normal direction for each translate of a. Similarly, we label b and its translates. A crossing of an oriented geodesic of geodesic ray in B^m with a translate of a or b will be called a positive crossing when it agrees with the selected direction; otherwise it will be called a negative crossing.

Suppose α is a geodesic ray in B^m, which does not lie in a translate of a and b. Then α crosses a sequence (finite or infinite, possibly of length 0) of translates of a and b. (When a geodesic ray starts in a translate, we count that intersection as a crossing.) To α, we associate a sequence $S(\alpha) = x_1 x_2 x_3...$ of elements in the set $\{a, \bar{a}, b, \bar{b}\}$ in the following way.
If the nth crossing of α with the union of the translates of a and b is a positive crossing with a translate of a, then $x_n = a$. If the nth crossing is a negative crossing with a translate of a, then $x_n = \bar{a}$. For crossings with translates of b, the elements b and \bar{b} are assigned similarly. Note that $S(\alpha)$ is an infinite sequence if and only if α ends at a limit point of Γ, and note that, for each sequence $S = x_1x_2x_3\ldots$ of elements of the set $\{a, \bar{a}, b, \bar{b}\}$ (with the property that for no n is x_n, x_{n+1} in the set $\{a\bar{a}, \bar{a}a, b\bar{b}, \bar{b}b\}$), there exists a geodesic ray α with $S(\alpha) = S$.

Using these sequences, the controlled concentration points of Γ can be characterized. The following characterization appears in [1], but we reproduce its proof here for the convenience of the reader.

PROPOSITION 2.1. Let p be a limit point of Γ which is the endpoint of a geodesic ray α with $S(\alpha) = x_1x_2x_3\ldots$. Then p is a controlled concentration point for Γ if and only if $S(\alpha)$ has the following property. There exists N such that for all $n \geq N$, for all positive k, and for all M, there exists $m \geq M$ such that $x_{n+i} = x_{m+i}$ for all i with $0 \leq i \leq k$.

Proof. Denote by λ_n the translate of a or b whose crossing with α determines x_n, and by U_n the neighborhood of p bounded by the endpoints of λ_n. Suppose the condition in the Proposition holds. By truncating α, we may assume that every subsequence reappears infinitely often. Let m_n be an integer so that $x_{m_n+i} = x_i$ for $1 \leq i \leq n$. Let γ_{m_n} be the element of Γ that translates λ_1 to λ_{m_n+1}. Note that this element translates λ_{k+1} onto λ_{m_n+k+1} for all $1 \leq k < n$. Given a neighborhood V of p, choose n so large that λ_n has endpoints in V. Then $\gamma_{m_n}(U_1) \subseteq V$ and $p \in \gamma_{m_n}(V)$, showing that U_1 can be concentrated with control. Conversely, suppose p is a controlled concentration point and choose N large enough so that U_N, and hence every neighborhood of p inside U_N, can be concentrated with control. For any $n, k > N$ and any M, there exists γ so that $\gamma(U_n) \subseteq U_M$ and $\gamma^{-1}(p) \subseteq U_{n+k}$. This γ must move $\lambda_n, \lambda_{n+1}, \ldots, \lambda_{n+k}$ onto a sequence of translates of a and b crossed by α, with endpoints in U_M. Thus the condition of Proposition 2.1 holds.

The next theorem which is originally stated in [2] (Theorem 3.3) is revised. The author would like to thank Darryl McCullough for improvement of the original statement.

We say a sequence $y_1y_2\cdots y_n$ is **admissible** if no pair y_i, y_{i+1} is in $\{a\bar{a}, \bar{a}a, b\bar{b}, \bar{b}b\}$.
Theorem 2.2. The limit point \(p \) is a Myrberg-Agdard density point if and only if for every \(\alpha \) ending at \(p \), every admissible sequence appears as a subsequence of \(S(\alpha) \).

Proof. Denote by \(W_n \) the neighborhood of \(p \) determined by the half space bounded by translates of \(a \) or \(b \) whose crossing with \(\alpha \) determines \(x_n \) of the sequence \(S(\alpha) = x_1 x_2 x_3 \cdots \).

Let \(p \) be a Myrberg-Agdard density point and let \(\alpha \) be a geodesic ray ending at \(p \). For each admissible sequence \(y_1 y_2 \cdots y_n \), we have an admissible pair \((U_1, U_2)\) determined by the half spaces bounded by translates of \(a \) or \(b \) such that \(U_1 = W_{y_1} \) and \(U_2 = W_{y_n} \). For a neighborhood \(V \) of \(p \), we choose an \(x_j \) with \(W_{x_j} \subset V \). Since the admissible pair \((U_1, U_2)\) can be concentrated at \(p \) from Theorem 1.1, there exists an element \(\gamma \in \Gamma \) such that \(p \in \gamma(U_2) \subset \gamma(U_1) \subset W_{x_j} \). Therefore every admissible sequence \(y_1 y_2 \cdots y_n \) appears as a subsequence of \(S(\alpha) \).

Conversely, let \((U_1, U_2)\) be an admissible pair at \(p \) and let \(V \) be a neighborhood of \(p \). Choose a pair \((W_1, W_2)\) which are half spaces bounded by translates of \(a \) or \(b \) such that \(W_2 \subset U_2 \) and \(W_1 \supset U_1 \). If there is an element \(\gamma \in \Gamma \) that concentrates \((W_1, W_2)\) will concentrate \((U_1, U_2)\).

For a geodesic ray \(\alpha \) ending at \(p \) and meeting \(W_1 \), form a sequence \(y_1 y_2 \cdots y_m \) of \(S(\alpha) \) by crossing of \(\alpha \) with translates of \(a \) or \(b \) so that

\[
W_1 = W_{y_1} \supset \cdots \supset W_{y_m} = W_2.
\]

Then the sequence \(y_1 y_2 \cdots y_m \) of \(S(\alpha) \) is admissible.

Now choose an \(x_j \) with \(W_{x_j} \subset V \), and past \(x_j \) there must have an appearance \(x_k x_{k+1} \cdots x_{k+m-1} = y_1 y_2 \cdots y_m \), so there exists an element \(\gamma \in \Gamma \) that moves \(W_1 \supset W_2 \) onto \(W_{x_k} \supset W_{x_{k+m-1}} \). Therefore \((U_1, U_2)\) can be concentrated at \(p \). By using Theorem 1.1, \(p \) is a Myrberg-Agdard density point.

If \((U_1, U_2)\) is not an admissible pair at \(p \), then because the orbit of any limit point is dense in the limit set, there is \(\tau \in \Gamma \) so that \(\tau^{-1}(p) \) is \(U_2 \). Therefore \(p \in \tau(U_2) \subset \tau(U_1) \) hence \((\tau(U_1), \tau(U_2))\) is an admissible pair at \(p \). Now we apply the same argument as in the above to show that \((\tau(U_1), \tau(U_2))\) can be concentrated at \(p \). This also implies the pair \((U_1, U_2)\) can be concentrated at \(p \). Again by using Theorem 1.1, \(p \) is a Myrberg-Agdard density point. This completes the proof of the theorem 2.2.

\(\square \)

The next theorems work only for Schottky groups acting on \(B^2 \). Let \(\Gamma \) be a Schottky group with 2 generators as is described in the beginning
of section 2 but we need to choose the geodesics in B^2 which lie in the
spheres in \mathbb{R}^2 with centers at the points (1,1,0), (-1,1,0), (0,1,1)
and (0,-1,1).

Denote by a_n a sequence of n a’s, and by $\overline{a_n}$ a sequence of n \overline{a}’s. The
following theorem which is a slight modification of Theorem 4.2 in [4]
gives examples of concentration points but not Myberg-Agard density
points for a two generator Schottky group. Other interesting phenomena
of concentration points and related properties can be found in [4].

Theorem 2.3. For each increasing sequence of positive integers $1 \leq
i_1 < j_1 < i_2 < j_2 < i_3 \cdots$, if p is a limit point which is the endpoint of
a geodesic ray whose crossing is

$$ba_i, b\overline{a}_i, ba_i, b\overline{a}_j, ba_i, b\overline{a}_j, \cdots$$

then p is a concentration point but not a Myberg-Agard density point.

The next theorem characterizes limit points for finitely generated
Fuchsian groups.

Theorem 2.4. (Theorem 3.2 in [4]) Let Γ be a Fuchsian group. If
Γ is finitely generated, then every limit point of γ is either a parabolic
fixed point or a geodesic separation point.

Now we will give an example which shows that in Theorem 2.4 the
hypothesis that Γ is finitely generated is necessary.

Example 2.5. A conical limit point for an infinitely generated 2-
dimensional Schottky group which is not a geodesic separation point.

For each positive integer k, let $z_k = \exp \left(\frac{\pi}{2} (1 - \frac{1}{k}) \right) \in S^1 \subset \overline{B^2}$.
Denote by ℓ_n the geodesic in B^2 through the origin with one end limiting
to z_n. Choose geodesics λ_n perpendicular to ℓ_n, near z_n, with diameters
small and limiting to 0 sufficiently fast so that each λ_n separates z_n from
all other z_i, and the λ_n are pairwise disjoint. Let λ'_n be the image of λ_{n+1}
under the reflection across the line through the origin perpendicular to
ℓ_{n+1}. For $n \geq 1$ let γ_n be the hyperbolic isometry which moves λ_n
on to λ'_n, carries the complementary region of λ_n containing z_n to the
complementary region of λ'_n containing z_n, and carries ℓ_n to ℓ_{n+1}. The
group generated by the γ_n is a Schottky group of infinite rank. For
\(n \geq 1 \) let \(\tau_n = \gamma_1^{-1}\gamma_2^{-1}\cdots\gamma_n^{-1} \) and \(\mu_1 = \lambda_1 \) and \(\mu_n = \tau_{n-1}(\lambda_n) \) for \(n \geq 2 \). Then the \(\mu_n \) form a nested sequence limiting toward \(z_1 \), and each \(\mu_n \) is the only translate of \(\lambda_n \) that crosses \(\ell_1 \). Therefore \(z_1 \) is not a geodesic separation point. But \(\tau_n^{-1}(\ell_1) = \ell_{n+1} \), and the images of the origin under \(\tau_n \) form a sequence of points on \(\ell_1 \) limiting to \(z_1 \). Therefore \(z_1 \) is a conical limit point for \(\Gamma \).

References

Sungbok Hong, Department of Mathematics, Korea University, Seoul 136-701, Korea

Han-Doo Kim, Department of Computational Mathematics, Inje University, Kimhae 621-749, Korea