A NOTE ON CLARKSONS INEQUALITIES

  • Published : 2001.01.01

Abstract

It is proved that if for each n, $1\leqp_n\leq2 \;and \;the(p_n, p’_n)$ Clarkson inequality holds in each Banach space X$_{n}$ then the (t, t’) Clarkson inequality holds in ($\sum^\infty_{n=1}\; X_n)_r, \;the \ell^r-sum \;of\; X_n’s,\; where\; 1\leqr<\infty,\; t=min{p, r, r’} \;and \;p = \;inf{p_n}.$ The (p, p’) Clarkson inequality is preserved by quotient maps and a new proof of a Takahashi-Kato theorem stating that the (p, p’) Clarkson inequality holds in a Banach space X if and only if it holds in its dual space $X_*$ is given.n.

Keywords

References

  1. Bull. Amer. Math. Soc. v.46 Uniform Convex Spaces R. P. Boas
  2. Trans. Amer. Math. Soc. v.40 Unifrom Convex Spaces J. A. Clarkson
  3. Math. Japon. v.31 Clarkson's Inequalities for Sobolev Spaces F. Cobos
  4. Math. Nachr. v.114 Generalized Clarkson's Inequalities and the Norms of the Littlewood Matrices M. Kato
  5. Math. Japon. v.43 On Generalized Clarkson's Inequalities for $L_p$(μ;$L_q$(v)) and Sobolev spaces M. Kato;K. Miyazaki
  6. Nihonkai Math. J. v.6 Cotype Constants for $L_p$($L_q$, Norms of the Rademacher Matrices and Interpolation M. Kato;K. Miyazaki;Y. Takahashi
  7. Math. Nachr. v.186 Type, Cotype Constants and Clarkson's Inequalities for Banach spaces M. Kato;Y. Takahashi
  8. Univ. Beograd. Publ. Elekrotehn. Fak. Ser. Mat. Fiz. No. 634-677 Some Generalizations of Clarkson's Inequalities M. Koskela
  9. Ann. Mat. Pure Appl. v.136 Complex Interpolatoin and Geometry of Banaach Spaces M. Milman
  10. Classical and New Inequalities in Analysis D. S. Mitrinovic;J. E. Pecaric;A. M. Fink
  11. Hiroshima Math. J. v.24 A Vector-Valued Interpolation Theoretical Proof of in Generalized Clarkson Inequalities K. Miyazaki;M. Kato
  12. Math. Nachr. v.188 Clarkson and Random Clarkson Inequalities for $L_x$(X) Y. Takahashi;M. Kato
  13. Math. Nachr. v.131 Random Clarkson Inequalities and $L_p$-Versions of Grothendieck of Grothendieck's Inequality A. Tonge