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FIXED POINT THEORY FOR MAPS HAVING
CONVEXLY TOTALLY BOUNDED RANGES

Ravi P. AGaRwAL AND DoNAL O’REGAN

ABSTRACT. Three new fixed point theorems are presented for the
set valued maps of Idzik. Moreover a continuation theorem for such
maps is also given.

1. Introduction

Schauder’s conjecture states that every continuous function from a
compact, convex subset of a Hausdorff topological vector space into it-
self would have a fixed point. In 1988 Idzik [3] gave a partial solution
to this conjecture using the concept of convexly totally bounded sets
(c.t.b.). This paper presents three generalizations of the result of Idzik.
In addition we present a homotopy result for the maps of Idzik which
automatically yield a generalization of the Leray—Schauder alternative
of Idzik and Park [4].

For the remainder of this section we present some definitions and
known results. Let E be a Hausdorff topological vector space.

DEFINITION 1.1. A set K C E is convexly totally bounded (c.t.b.)
if for every neighborhood V' of 0 € E there exists a finite set {z; : i €
I} C K (I finite) and a finite family of convex sets {C; : i € I} with
C; CV foreach i € I and K C Ujes(x; + Cy).

Note that {z;: i € I} can be chosen in E (see [4]). We know every
compact set in a locally convex space is c.t.b. From [4] we have the
following two results:

PROPOSITION 1.1. If a compact set K is c.t.b., then the set [0,1] K
is compact and c.t.b.
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PROPOSITION 1.2. Every (compact) subsat of a c.t.b. set is c.t.b.

Now Idzik’s [3] partial solution to Schauder’s conjecture can be stated
as follows.

THEOREM 1.3. Let X be a nonempty, convex subset of a Hausdorff
topological vector space E and F : X — CK(X) a upper semicon-
tinuous map (here CK(X) denotes the family of nonempty, compact,

convex subsets of X). If F(X) is a compact, c.t.b. subset of X, then
there exists zg € X with zg € F (z9).

COROLLARY 1.4. Let X be a nonempty, convex subset of a Hausdorff
topological vector space E and F : X — CK(X) a closed map. If
F(X) is a compact, c.t.b. subset of X, then there exists g € X with
9 € F (1‘0)

Proof. From [2 p.465] we know F : X --» CK(X) is us.c, so the
result will follow from Theorem 1.3. g

2. Fixed point theory
We begin this section by extending a result of Idzik [3].

THEOREM 2.1. Let  be a closed, convex subset of a Hausdorff
topological vector space E with zg € Q. Suppose F : Q — CK(Q) is
closed with the following property holding:

(2.1) ACQ, A=co({zo}UF(A)) implies A is compact.

Also assume F(Y) is c.t.b. Then F has a fixed point in €.

Proof. Consider F the family of all closed, convex subsets C of 2
with zo € C and F(z) C C for all z € C. Note F # () since Q) € F.
Let

CO = mCe]—' C
Notice Cy is nonempty, closed and convex and F : Cy — 2°° since if
z € Cy then F(z) CC forall C € F. Let

(2.2) C1 =0 ({zo} U F(Co)).

Notice F' : Cy — 290 together with Cy closed and convex implies
Cy1 € Cp. Also F(C1) C F(Cp) € Cy from (2.2). Thus C; is closed
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and convex with F(C;) C Cy. As aresult Ch € F, so Cy C (.
Consequently

(2.3) Co =0 ({zo} U F(Ch))-

Now (2.1) guarantees that Cj is compact, and notice (2.3) implies
F(Cy) C Cyg. Thus F : Cp — CK(Cp) is a closed map. In addi-
tion F(Cp) is compact (since F(Cp) is a closed subset of the com-
pact space Cp) and F(Cp) is c.t.b (Proposition 1.2; note Cy C Q
so F(Cp) C F(R2)). Apply Corollary 1.4 to deduce that there exists

zg € Cy with z¢ € F(xp). O

It is possible to relax assumption (2.1) as the following theorem shows.

THEOREM 2.2. Let Q be a closed, convex subset of a Hausdorff
topological vector space E and xg € €. Suppose F : Q — CK(Q) is
closed and satisfies the following property:

(2.4) ACQ, A=co({xo}UF(A)) implies A is compact.

Also assume F(Q) is c.t.b. Then F has a fixed point in €.

Proof. Let
Do = {z0},
Dy =co({xo} UF(Dy-1)) for n=1,2,.......
and
D =32y D,.
Now for n =0,1,... notice D,, is convex. Also by induction we see that
Dy CD; C ........ CD,1C Dy, c Q.

Consequently D is convex. It is also immediate since (D,,) is increasing
that

(2.5) D = | co ({zo} U F(Dn_1)) = co({zo} U F(D)).
n=1

Now (2.4) implies that D is compact, and (2.5) implies F((D) C D. Let
F*(z) = F(z) N D.

We first show F* : D — 2P i.e. weshow F*(z) # @ for each 2 € D. To
see this it is enough to show D C F~1(D). Indeed if z € D then z, —
z for some net (z,) in D. Take any y, € F(z,). Since F(D) C D
we have y, € D C D. The compactness of D guarantees that we may
assume without loss of generality that y, — y for some y € D. Since
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(s Ya) € graph F and graph F is closed, ve have (z,y) € graphF.
Thus y € F(z) N D ie. z € F7I(D). Asaresult D C F~1(D) so
F*:D — 2D, Also notice graph F* is closed so F*: D — CK (D) is
a closed map with F*(D) compact (since F:ﬁ is a closed subset of
the compact set D) and F*(D) is c.t.b. (Proposition 1.2; note D C Q
so F*(D) C F*(Q) C F(f)). Corollary 1.4 implies that there exists
zo € D with zy € F*(zg). As a result zg € F(zg). O

Next we obtain a Ménch (O’Regan, Precup [5]) theorem for the maps
of Idzik.

THEOREM 2.3. Let Q be a closed, convex subset of a Hausdorff
topological vector space E and zq € 2. Suppose F : Q — CK(f) is
closed and satisfies the following properties:

(2.6) F maps compact sets into relatively compact sets,

2.7) [ ACQ, A=co({xo} UF(A)) with A=C
' and C C A countable, implies A is compact,

(2.8) exists a countable set BC A with B = A,

{ for any relatively compact subsct A of ) there
and
(2.9) if A is a compact subset of 0 then ¢o(A) is compact.

Also assume F(QQ) is c.t.b. Then F has a fixed point in Q.
REMARK 2.1. If E is metrizable then (2.8) holds.

REMARK 2.2. If F is countably ®-condensing [1] with (2.6) and
(2.9) holding, then (2.7) is satisfied.

Proof. Let
Do = {zo},
D, =co({zo}UF(Dy_1)) for n=1,2,......
and
D = Uy Dy,
We know from Theorem 2.2 that D is convex and
(2.10) D = co({zo} U F(D)).
We now show D, is relatively compact for n = 0,1,.... Suppose Dy

is relatively compact for some k € {1,2,...}. Then (2.6) guarantees
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that F(Dy) is relatively compact and this together with (2.9) implies
@ ({zo}UF(Dy)) is compact. Consequently Dy, is relatively compact.

Now (2.8) implies that for each n € {0,1,...} there exists C, with
C,, countable, C, C Dy, and C, = D,,. Let C = Us2 3 Crn. Now since

o0 o o
UbncUDuc U Dn
n=0 n=0 n=0

we have

oo oo

U D, = U D,=D and
n=0 n=0
Thus C = D. This together with (2 7) 1mp11es that D_ is compact.
From (2.10) we have F(D) C D. Let
F*(z) = F(z) N D.
Essentially the same reasoning as in Theorem 2.2 guarantees that F™* :

D — CK(D) is a closed map with F*(D) compact and F*(D) is c.t.b.
Now apply Corollary 1.4. O

ng

bl
ﬁCz
HCS

Next we present a “homotopy” type result for the maps of Idzik. The
result was motivated by the papers [4, 6]. For our next three definitions
assume FE is a Hausdorff topological vector space, Wlth U an open
subset of E and 0 € U.

DEFINITION 2.1. F € IP(U,E) if F:U — CK(E) is a closed map

with F(U) a compact, c.t.b. subset of E; here U denotes the closure
of U in E.

DEFINITION 2.2. F € IPyy(U,E) if F € IP(U,E) with z ¢ F(x)
for € OU; here OU denotes the boundary of U in E.

DEFINITION 2.3. F € IPyy(U,E) is essential in IPyy (U, E) if for
every G € IPyy(U,E) with Gloy = F|sy there exists z € U with
r € G (z).

First we give an example of an essential map.

THEOREM 2.4. Let E be a Hausdorff topological vector space, U
an open subset of E and 0 € U. Then the zero map is essential in
IPy; (U, E).
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Proof. Let 6 € IPyy(U,E) with lay = {0}. We must show that
there exists z € U with « € 8(x). Let Q@ =¢5({0} UO(U)) and let F
be given by .

_f b(=), ze€U
Fle) = { {0}, otherwise.

Note 0 € . Also notice F': Q@ — CK(§) is a closed map with F(Q2)

compact since 6(U) is compact. Also F(Q) is c.t.b. since 8(U) is
c.t.b. Thus F € IP(Q,Q). Now Corollary 1.4 guarantees that there
exists z € Q with z € F(z). If x ¢ U we have z € F(z) = {0}, which
is a contradiction since 0 € U. Thus we have z € U so z € F(z) =
6(z). O

Finally we present a generalization of the Leray—Schauder alternative
in [4] (i.e. we not only conclude that the map has a fixed point but in
addition that it is essential).

THEOREM 2.5. Let E be a Hausdorff topological vector space, U
an open subset of E with 0 € U. Suppose F € IP(U,E) satisfies

(2.11) x & ANF(z) for x €U and )€ (0,1].
Then F is essential in 1Py (U, E).

Proof. Let H € IPyy(U,E) with H|sy = Floy. We must show H
has a fixed point in U. Consider

B={z€U: z€tH (z) forsome t€[0,1]}.
Now B # 0 since 0 € U. Also B is closed since H is a closed map.

In fact B is compact since H(U) is compact. Also BN AU = { since
(2.11) holds and H|sy = F'|sy. Now since Hausdorff topological spaces
are completely regular, there exists a continuous u : U — [0,1] with
#(@U) = 0 and p(B) = 1. Define a map R, by R,(x) = p(z) H(z).

Clearly R, : U — CK(E) is a closed map with R,(U) compact since

H(U) is compact. In addition from Proposition 1.1 we know the com-

pact set [0,1] H(U) is c.t.b., and as a result frcm Proposition 1.2 we have
that R,(U) is c.t.b. Consequently R, € IP(U,E). Note R,|soy = {0}
so R, € IPsy(U,E) with R,|ou = {0}. Now Theorem 2.4 guarantees
that the zero map is essential in I Py (U, E), so as a result there exists
z € U with 2 € R, (x). Consequently z € B and so u(x) = 1. This
implies z € H (z). O

In fact it is also possible to improve Theorem 2.5 as follows.
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DEFINITION 2.4. F € IPC(U,E) if F:U — CK(E) is a closed
map, takes compact sets into relatively compact-sets, with F(U) a
c.t.b. subset of E, and F satisfies condition (C) (i.e. if A C U and
A Ceo({0}UF(A)) then A is compact).

DEFINITION 2.5. F € IPCsy(U,E) if F € IPC(U,E) with z ¢
F(z) for z € 8U.

DEFINITION 2.6. F € IPCyy (U, E) is essential in IPCsy (U, E) if
for every G € IPCsy(U,E) with Glay = Floy there exists z € U
with = € G (z).

THEOREM 2.6. Let E be a Hausdorff topo]ogwal vector space, U
an open subset of E with 0 € U. Suppose F € IPC(U,E) and assume
the following conditions are satisfied:

(2.12) the zero map is essential in IPCysy (U, E),
(2.13) z ¢ ANF(z) for £ €U and X€ (0,1],
and

and for any map H € IPC(U,E) with H|sy = Flav,
then R,(U) is c.t.b.; here R,(z) = p(x) H(zx).
Then F is essential in IPCpyy (U, E).
Proof. Let H € IPCyy(U,E) with Hloy = Floy. Let B, p and
R, be as in Theorem 2.5. Clearly R, : U — CK(E) is a closed map,

takes compact sets into relatively compact sets, and R,(U) is c.t.b. by
(2.14). In addition R, satisfies condition (C). To see this let A C U
and A C ¢ ({0} U R,(A)). Then since R,(A) C co({0} U H(A)) we
have

for any continuous map p:U — [0,1] with u(dU) =0
(2.14)

A C o (co ({0} U H(A))) =20 ({0} U H(A)).
Now since H satisfies condition (C), we have that A is compact.
Thus R, € IPC(U,E). Moreover since Rylsy = {0} we have R, €
IPCsy(U,E). Now (2.12) implies that there exists x € U with z €

R, (z). Consequently z € B and so u(z) = 1. This implies z €
H (z). O

REMARK 2.3. If condition (C) in Definition 2.4 is replaced by, if
ACU and A Cco({0}UF(A)) then A is compact, then the result in
Theorem 2.6 is again true.
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REMARK 2.4. If condition (C) in Definition 2.4 is replaced by, if
ACU, ACco({0}UF(A)) with A=C and C C A countable, then
A is compact, then the result in Theorem 2.6 is again true if one of the
following conditions hold:

(2.15a) E is a normal space

or

E is such that any closed subset is compact

(2.150) if and only if it is sequentially compact.

One can easily put conditions to guarantee (2.12).

THEOREM 2.7. Let E be a Hausdorff topological vector space, U
an open subset of E with 0 € U. Assume the following condition is
satisfied:

(2.16)

for any map 6 € IPCyy(U,E) with 8|gy = {0}, and for any set

ACQ=7c0(8(U)U{0}) with ACeo({0}Ub(ANU)) and

8(ANU) relatively compact, we have that A is compact.

Then the zero map is essential in IPCay (U, E).

Proof. Let 0, and F be as in Theorem 2.4. Notice F : Q@ —
CK(R) is a closed map and F(Q) is c.t.b. since §(U) is c.t.b. Also
note I’ takes compact sets into relatively compact sets. Next we show
that F satisfies condition (C). To see this notice if A C Q with
A Cco({0} UF(A)), then .

(217) ACG@({0}Ub(ANT)) so ANU Cea({0}U8(ANT)).

Now since @ satisfies condition (C) we have that ANU is compact,
and so since § € IPC(U,E) we have that §(ANUT) is relatively com-
pact. This together with (2.16) and (2.17) yields that A is compact,
so F satisfies condition (C). Thus F' € IPC(Q,2). Now Theorem 2.1
guarantees that there exists € Q with = € F(z). As before x € U so
z € 0(x). O

REMARK 2.5. If condition (C) is as in Remark 2.3 then Theorem
2.7 again holds (in the proof we use Theorem 2.2). If condition (C)
is as in Remark 2.4 then Theorem 2.7 again holds (in the proof we use
Theorem 2.3).
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