REMARKS ON THE STABILITY OF ADDITIVE FUNCTIONAL EQUATION

KIL-WOUNG JUN AND HARK-MAHN KIM

ABSTRACT. In this paper, using an idea from the direct method of Hyers, we give the conditions in order for a linear mapping near an approximately additive mapping to exist.

1. Introduction

In 1940, S. M. Ulam [11] gave a wide ranging talk before the mathematics club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of group homomorphisms:

Let G_1 be a group and let G_2 be a metric group with the metric $d(\cdot, \cdot)$. $Given \ \epsilon > 0$, does there exist a $\delta > 0$ such that if a function $h: G_1 \to G_2$ satisfies the inequality $d(h(xy), h(x)h(y)) < \delta$ for all $x, y \in G_1$, then there exists a homomorphism $H: G_1 \to G_2$ with $d(h(x), H(x)) < \epsilon$ for all $x \in G_1$?

In other words, we are looking for situations when the homomorphisms are stable, i.e., if a mapping is almost a homomorphism, then there exists a true homomorphism near it. The case of approximately additive functions was solved by D. H. Hyers [4] under the assumption that G_1 and G_2 are Banach spaces. Let E_1 be a real normed space and E_2 a real Banach space. In 1941 D. H. Hyers [4] considered approximately additive mappings $f: E_1 \to E_2$ satisfying $||f(x+y) - f(x) - f(y)|| \le \epsilon$ for all $x, y \in E_1$. He proved that the limit $T(x) = \lim_{n \to \infty} 2^{-n} f(2^n x)$ exists for all $x \in E_1$ and that $T: E_1 \to E_2$ is the unique additive mapping satisfying $||f(x) - T(x)|| \le \epsilon$. No continuity condition is required

Received April 2, 2001. Revised June 22, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 39B52, 39B72.

Key words and phrases: Hyers-Ulam-Rassias stability, functional equation.

This work was supported by grant No. 981-0102-012-1 from the KOSEF.

for this result, but if f(tx) is continuous in the real t for each fixed x, then the mapping T is linear. In 1978, a generalized solution to Ulam's problem for approximately linear mappings was given by Th. M. Rassias [8]. He considered a mapping $f: E_1 \to E_2$ satisfying the condition of continuity of f(tx) in t for each fixed x and assumed the weaker condition $||f(x+y)-f(x)-f(y)|| \le \theta(||x||^p+||y||^p)$, for all $x,y \in E_1$, where $\theta \geq 0$ and $0 \leq p < 1$. He proved that the above function $T: E_1 \rightarrow E_2$ is the unique linear mapping satisfying $||f(x) - T(x)|| \le \frac{2\theta}{2-2^p} ||x||^p$. The proof given in [8] works also when p < 0. In 1990 Th. M. Rassias asked the question whether such a theorem can also be proved for $p \ge 1$. In [2] Z. Gajda followed a similar approach as in [8] and obtained a solution of this problem for p > 1. His result states that the mapping $T: E_1 \to E_2$ defined by $T(x) = \lim_{n\to\infty} 2^n f(2^{-n}x)$ is the unique additive mapping satisfying $||f(x) - T(x)|| \le \frac{2\theta}{2^p - 2} ||x||^p$. The problem when p = 1 is not true. Counterexamples for the corresponding assertion in the case p=1were constructed by Gajda [2] and Rassias and Semrl [9]. Y. H. Lee and K. W. Jun [7] have improved the stability problem for approximately additive mappings. This leads to the problem of proving the similar results replacing the right-hand side with H(||x||, ||y||), where H is a two variable real function on $\mathbb{R}_+ \times \mathbb{R}_+$. Some answers to this question were given recently by Rassias and Semrl [10] and Isac and Rassias [5]. Therefore the general question is to find weaker conditions under which the direct method works. The stability problems of several functional equations have been extensively investigated by a number of authors. In this paper, using an idea from the direct method of Hyers, we shall give conditions in order for a linear mapping near an approximately additive mapping to exist.

2. Stability of additive functional equation

Let \mathbb{R}^+ denote the set of all nonnegative real numbers. Recall that a mapping $H: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ is homogeneous of degree $p \geq 0$ if it satisfies $H(tu,tv) = t^p H(u,v)$ for all $t,u,v \in \mathbb{R}^+$. The following theorem is due to Th. M. Rassias and P. Šemrl [10].

THEOREM 2.1 [10, Theorem 1]. Let E_1 be a real normed space, E_2 a Banach space. Assume that $H: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ is a monotonically increasing symmetric homogeneous function of degree p, where

 $p \geq 0, p \neq 1$ and define $H(1,1) = \theta$. Let $f: E_1 \rightarrow E_2$ satisfy

$$||f(x+y) - f(x) - f(y)|| \le H(||x||, ||y||)$$

for all $x, y \in E_1$. Then there exists a unique additive mapping $T : E_1 \to E_2$ such that

$$||f(x) - T(x)|| \le \frac{1}{|2 - 2^p|} H(||x||, ||x||) = \frac{\theta}{|2 - 2^p|} ||x||^p$$

for all $x \in E_1$. Moreover, if for every fixed $x \in E_1$, there exists a real number $\delta_x > 0$ such that the function $t \mapsto ||f(tx)||$ is bounded on $[0, \delta_x]$, then T is linear.

We will show that Theorem 2.1 is still valid if the condition of monotonically increasing symmetric homogeneous function of degree p is changed to the weaker condition as follows.

THEOREM 2.2. Let E_1 be a real normed space, E_2 a Banach space. Let $p \geq 0$, $p \neq 1$ and let $H : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ be a mapping satisfying $H(tx,ty) \leq t^p H(x,y)$ for all $t,x,y \in \mathbb{R}^+$. Suppose that a function $f: E_1 \to E_2$ satisfies

$$(2.1) ||f(x+y) - f(x) - f(y)|| \le H(||x||, ||y||)$$

for all $x, y \in E_1$. Then there exists a unique additive mapping $T: E_1 \to E_2$ such that

$$(2.2) ||f(x) - T(x)|| \le \frac{1}{|2 - 2^p|} H(||x||, ||x||) \le \frac{H(1, 1)}{|2 - 2^p|} ||x||^p$$

for all $x \in E_1$. Moreover, if for every fixed $x \in E_1$, there exists a real number $\delta_x > 0$ such that the function $t \mapsto ||f(tx)||$ is bounded on $[0, \delta_x]$, then T is linear.

Proof. Case p < 1.

Let x be any fixed element in E_1 . The relation (2.1) for y = x yields $||f(2x) - 2f(x)|| \le H(||x||, ||x||)$, which implies

Claim that

$$(2.4) ||2^{-n}f(2^nx) - f(x)|| \le \frac{1 - 2^{n(p-1)}}{2 - 2^p} H(||x||, ||x||)$$

for any positive integer n. The verification of (2.4) follows by induction on n. Note that (2.4) reduces to (2.3) for n = 1. Assume now that (2.4) holds and we want to prove it for the case n + 1. We write the inequality (2.4) for 2x instead of x and divide by x. We obtain

$$||2^{-n-1}f(2^{n+1}x) - 2^{-1}f(2x)|| \le \frac{1 - 2^{n(p-1)}}{2(2 - 2^p)}H(2||x||, 2||x||)$$
$$\le \frac{1 - 2^{n(p-1)}}{2(2 - 2^p)}2^pH(||x||, ||x||).$$

By the triangle inequality, together with the inequality (2.3), we get

$$||2^{-n-1}f(2^{n+1}x) - f(x)|| \le ||2^{-n-1}f(2^{n+1}x) - 2^{-1}f(2x)|| + ||2^{-1}f(2x) - f(x)|| \le \frac{1 - 2^{(n+1)(p-1)}}{2 - 2^p}H(||x||, ||x||).$$

Thus (2.4) is valid for any positive integer n, and it follows that

$$(2.5) ||2^{-n}f(2^nx) - f(x)|| \le \frac{1}{2 - 2^p}H(||x||, ||x||)$$

because $\{2^{n(p-1)}\}$ converges to zero, as p < 1. However, for m > n > 0,

$$||2^{-m}f(2^{m}x) - 2^{-n}f(2^{n}x)|| = 2^{-n}||2^{-(m-n)}f(2^{m-n}2^{n}x) - f(2^{n}x)||$$

$$\leq 2^{-n}\frac{1 - 2^{(m-n)(p-1)}}{2 - 2^{p}}H(2^{n}||x||, 2^{n}||x||)$$

$$\leq 2^{n(p-1)}\frac{1 - 2^{(m-n)(p-1)}}{2 - 2^{p}}H(||x||, ||x||).$$

Because the right-hand side of the above sequence of inequalities tends to zero if n tends to infinity. Therefore $\{2^{-n}f(2^nx)\}$ is a Cauchy sequence. But E_2 , as a Banach space, is complete, and thus the sequence converges. Define $T(x) = \lim_{n\to\infty} 2^{-n}f(2^nx)$ for all $x \in E_1$. Inequality (2.4) implies

$$||T(x) - f(x)|| \le \frac{1}{2 - 2^p} H(||x||, ||x||) \le \frac{H(1, 1)}{2 - 2^p} ||x||^p.$$

It follows from (2.1) that

$$2^{-n} \|f[2^n(x+y)] - f[2^n x] - f[2^n y]\| \le 2^{-n} H(2^n \|x\|, 2^n \|y\|)$$

$$\le 2^{n(p-1)} H(\|x\|, \|y\|),$$

which implies T(x+y) = T(x) + T(y), since the sequence $\{2^{n(p-1)}\}$ converges to zero when n tends to infinity. This condition implies that $T(2^nx) = 2^nT(x)$ for any $x \in E_1$. We want to prove that T is the unique such function. Suppose that there exists another one V such that $\|V(x) - f(x)\| \leq \frac{1}{2-2^q}H_1(\|x\|, \|x\|)$ for a certain function H_1 with the corresponding q < 1. Then we have

$$\begin{split} \|T(x) - V(x)\| &= 2^{-n} \|T(2^n x) - V(2^n x)\| \\ &\leq 2^{-n} \frac{H(2^n \|x\|, 2^n \|x\|)}{2 - 2^p} + 2^{-n} \frac{H_1(2^n \|x\|, 2^n \|x\|)}{2 - 2^q} \\ &\leq 2^{n(p-1)} \frac{H(\|x\|, \|x\|)}{2 - 2^p} + 2^{n(q-1)} \frac{H_1(\|x\|, \|x\|)}{2 - 2^q}. \end{split}$$

Since both terms of the right-hand side in the above inequalities tend to zero for n tending to infinity, T coincides with V.

Case 1 < p.

Putting $\frac{x}{2}$ in place of x and y in inequality (2.1), we obtain

(2.6)
$$\|f(x) - 2f\left(\frac{x}{2}\right)\| \le H\left(\left\|\frac{x}{2}\right\|, \left\|\frac{x}{2}\right\|\right) \le \frac{1}{2^p} H(\|x\|, \|x\|)$$

for all $x \in E_1$. Hence for each $n \in \mathbb{N}$ and every $x \in E_1$, we have by (2.6)

$$\left\| f(x) - 2^{n} f\left(\frac{x}{2^{n}}\right) \right\|$$

$$\leq \left\| f(x) - 2f\left(\frac{x}{2}\right) \right\| + 2\left\| f\left(\frac{x}{2}\right) - 2f\left(\frac{x}{2^{2}}\right) \right\|$$

$$+ \dots + 2^{n-1} \left\| f\left(\frac{x}{2^{n-1}}\right) - 2f\left(\frac{x}{2^{n}}\right) \right\|$$

$$\leq 2^{-p} H(\|x\|, \|x\|) + 2^{1-p} H\left(\frac{\|x\|}{2}, \frac{\|x\|}{2}\right)$$

$$+ \dots + 2^{n-1-p} H\left(\frac{\|x\|}{2^{n-1}}, \frac{\|x\|}{2^{n-1}}\right)$$

$$\leq 2^{-p} H(\|x\|, \|x\|) + 2^{1-2p} H(\|x\|, \|x\|) + \dots$$

$$+ 2^{n-1-np} H(\|x\|, \|x\|)$$

$$= 2^{-p} (1 + 2^{1-p} + 2^{2(1-p)} + \dots + 2^{(n-1)(1-p)}) H(\|x\|, \|x\|)$$

$$\leq \frac{1}{2^{p} - 2} H(\|x\|, \|x\|) .$$

Now, fix an $x \in E_1$ and choose arbitrary $m, n \in \mathbb{N}$ such that m > n. Then by (2.7)

$$\begin{aligned} \left\| 2^m f\left(\frac{x}{2^m}\right) - 2^n f\left(\frac{x}{2^n}\right) \right\| &= 2^n \left\| f\left(\frac{x}{2^n}\right) - 2^{m-n} f\left(\frac{1}{2^{m-n}} \frac{x}{2^n}\right) \right\| \\ &\leq \frac{2^n}{2^p - 2} H\left(\frac{\|x\|}{2^n}, \frac{\|x\|}{2^n}\right) \\ &\leq \frac{2^n}{(2^p - 2)2^{np}} H(\|x\|, \|x\|), \end{aligned}$$

which becomes arbitrarily small as $n \to \infty$. On account of the completeness of the space E_2 , this implies that the sequence $\{2^n f(\frac{x}{2^n})\}$ is convergent for each $x \in E_1$. Thus T is correctly defined by $T(x) = \lim_{n \to \infty} 2^n f(\frac{x}{2^n})$. Moreover it satisfies condition

$$||f(x) - T(x)|| \le \frac{1}{2^p - 2} H(||x||, ||x||) \le \frac{H(1, 1)}{2^p - 2} ||x||^p,$$

which results on letting $n \to \infty$ in (2.7). Finally, replacing x by $\frac{x}{2^n}$ and y by $\frac{y}{2^n}$ in (2.1) and then multiplying both sides of the resulting inequality by 2^n , we get

$$\left\| 2^n f \left(\frac{x+y}{2^n} \right) - 2^n f \left(\frac{x}{2^n} \right) - 2^n f \left(\frac{y}{2^n} \right) \right\| \leq 2^{n(1-p)} H(\|x\|, \|y\|)$$

for $x,y\in E_1$. Since the right-hand side of this inequality tends to zero as $n\to\infty$, it becomes apparent that the mapping T is additive. It is also clear what has to be changed in the proof of the uniqueness of T. The remaining assertion in the theorem is proved by the same argument as that of [10]. Assume that for every fixed $x\in E_1$ there exists a positive real δ_x such that the function $t\mapsto \|f(tx)\|$ is bounded on $[0,\delta_x]$. Fix $z\in E_1$ and $\varphi\in E_2^*$ (the dual space of E_2). Let us denote

$$M_z = \sup\{\|f(tz)\| : t \in [0, \delta_z]\}.$$

Consider the function $\phi : \mathbb{R} \to \mathbb{R}$ defined by $\phi(t) = \varphi(T(tz))$. It is obvious that ϕ is additive. For any real number $t \in [0, \delta_z]$, we have

$$\begin{aligned} |\phi(t)| &= |\varphi(T(tz))| \le ||\varphi|| ||T(tz)|| \le ||\varphi|| (||T(tz) - f(tz)|| + ||f(tz)||) \\ &\le ||\varphi|| \left(\frac{1}{|2^p - 2|} H(||tz||, ||tz||) + M_z\right) \\ &\le ||\varphi|| \left(\frac{\delta_z^p}{|2^p - 2|} H(||z||, ||z||) + M_z\right). \end{aligned}$$

It is a well known fact that if an additive function $\phi : \mathbb{R} \to \mathbb{R}$ is bounded on an interval of positive length, then it is of the form $\phi(t) = \phi(1)t$ for all real values of t [1, Corollary 2.5]. Therefore $\varphi(T(tz)) = \varphi(tT(z))$ for any $t \in \mathbb{R}$, and consequently T is a linear mapping.

REMARK 2.3. In Theorem 2.2, the mapping T is also linear if for each $x \in E_1$ the transformation $t \mapsto f(tx)$ is continuous [8]. The condition (2.2) is still true for all $x \in E_1 - \{0\}$ when p < 0. Furthermore in case p < 1, the condition $H(2x,2y) \le 2^p H(x,y)$ has been only used and in case p > 1, we have used the condition $H(\frac{1}{2}x, \frac{1}{2}y) \le \frac{1}{2^p} H(x,y)$. Thus it is easy for someone to see that the proof of Theorem 2.2 as given above shows that the condition

$$||f(x) - T(x)|| \le \frac{1}{|2 - 2^p|} H(||x||, ||x||)$$

is still true under the condition $H(tx,ty) \leq t^p H(x,y)$ for all $x,y \in \mathbb{R}^+$, where $t=2, \frac{1}{2}$ and $p \in \mathbb{R} - \{1\}$. Hence we obtain the following corollaries, which were the results of Th. M. Rassias [8], Z. Gajda [2], G. Isac and Th. M. Rassias [6]. In particular, in case p < 1, the conclusion of Theorem 2.2 coincides with the result of Găvruta [3].

The following corollary can be found in [2].

COROLLARY 2.4. Let E_1 be a real normed space, E_2 a Banach space. Let $f: E_1 \to E_2$ be a mapping for which there exist two constant $\epsilon \geq 0$ and $p \in \mathbb{R} - \{1\}$ such that

$$||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$$

for all $x, y \in E_1$ $(E_1 - \{0\})$ if p < 0. Then there exists a unique additive mapping $T: E_1 \to E_2$ such that

$$||f(x) - T(x)|| \le \frac{2\epsilon}{|2 - 2^p|} ||x||^p$$

for all $x \in E_1$ $(E_1 - \{0\})$ if p < 0. Moreover, if for every fixed $x \in E_1$ the transformation $t \mapsto f(tx)$ is continuous in $t \in \mathbb{R}$, then the mapping T is linear.

The following corollary can be referred in [6].

COROLLARY 2.5. Let E_1 be a real normed space, E_2 a Banach space. Let $f: E_1 \to E_2$ be a mapping for which there exist three constant $\epsilon \geq 0$ and $p_1, p_2 \in \mathbb{R} - \{1\}$ such that $p_2 \leq p_1 < 1$ or $1 < p_2 \leq p_1$ and

$$||f(x+y) - f(x) - f(y)|| \le \epsilon (||x||^{p_1} + ||y||^{p_2})$$

for all $x, y \in E_1$ ($E_1 - \{0\}$ if $p_i < 0$ for some i). Then there exists a unique additive mapping $T: E_1 \to E_2$ such that

$$||f(x) - T(x)|| \le \begin{cases} \frac{\epsilon(||x||^{p_1} + ||x||^{p_2})}{2 - 2^{p_1}}, & (p_2 \le p_1 < 1), \\ \frac{\epsilon(||x||^{p_1} + ||x||^{p_2})}{2^{p_2} - 2}, & (1 < p_2 \le p_1) \end{cases}$$

for all $x \in E_1$ $(E_1 - \{0\})$ if $p_i < 0$ for some i). Moreover, if for every fixed $x \in E_1$ the transformation $t \mapsto f(tx)$ is continuous in $t \in \mathbb{R}$, then the mapping T is linear.

Proof. To apply Theorem 2.2, we consider $H(t,s) = \epsilon(t^{p_1} + s^{p_2})$. In case $p_2 \leq p_1 < 1$, we have

$$H(2t,2s) = \epsilon(2^{p_1}t^{p_1} + 2^{p_2}s^{p_2}) \le 2^{p_1}\epsilon(t^{p_1} + s^{p_2}) = 2^{p_1}H(t,s).$$

In case $1 < p_2 \le p_1$, we get

$$H\Big(\frac{t}{2},\frac{s}{2}\Big) = \epsilon\Big(\frac{t^{p_1}}{2^{p_1}} + \frac{s^{p_2}}{2^{p_2}}\Big) \leq \frac{1}{2^{p_2}}\epsilon(t^{p_1} + s^{p_2}) = \frac{1}{2^{p_2}}H(t,s).$$

Applying Theorem 2.2 and using Remark 2.3, we obtain the results. \Box

References

- J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.
- [2] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431–434.
- [3] P. Găvruta, A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- [4] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
- [5] G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of Ψ- additive mappings, J. Approx. Theory 72 (1993), 131–137.
- [6] ______, Functional inequalities for approximately additive mappings, In: Stability of mappings of Hyers-Ulam type (eds. Th. M. Rassias and J. Tabor) Hadronic Press, Palm Harbor, Florida (1994), 117–125.

- [7] Y. H. Lee and K. W. Jun, On the stability of approximately additive mappings, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1361–1369.
- [8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. **72** (1978), 297–300.
- [9] Th. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
- [10] _____, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
- [11] S. M. Ulam, Problems in Modern Mathematics, Chap. VI, Science ed., Wiley, New York, 1960.

Department of Mathematics, Chungnam National University, Taejon 305-764, Korea

E-mail: kwjun@math.cnu.ac.kr hmkim@math.cnu.ac.kr