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REMARKS ON THE STABILITY OF
ADDITIVE FUNCTIONAL EQUATION

KiL-WoUNG JUN AND HARK-MAHN KiMm

ABSTRACT. In this paper, using an idea from the direct method of
Hyers, we give the conditions in order for a linear mapping near an
approximately additive mapping to exist.

1. Introduction

In 1940, S. M. Ulam [11] gave a wide ranging talk before the math-
ematics club of the University of Wisconsin in which he discussed a
number of important unsolved problems. Among those was the ques-
tion concerning the stability of group homomorphisms:

Let G4 be a group and let Gy be a metric group with the metric d(-,-).
Given € > 0, does there exist a 6 > 0 such that if a function h : G; — G4
satisfies the inequality d(h(zy), h{z)h(y)) < 0 for all z,y € Gi, then
there exists a homomorphism H : G; — G2 with d(h(z),H(z)) < € for
allz € G17

In other words, we are looking for situations when the homomor-
phisms are stable, i.e., if a mapping is almost a homomorphism, then
there exists a true homomorphism near it. The case of approximately ad-
ditive functions was solved by D. H. Hyers [4] under the assumption that
(G1 and G are Banach spaces. Let F; be a real normed space and Ej
a real Banach space. In 1941 D. H. Hyers [4] considered approximately
additive mappings f : F; — Fj satisfying || f(z +vy) — f(z) = f(w)|| < ¢
for all 2,3 € E;. He proved that the limit 7(x) = lim,_o 2~ "f(2"x)
exists for all z € F; and that T': E; — F5 is the unique additive map-
ping satisfying || f(z) — T'(z)|| < €. No continuity condition is required
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for this result, but if f(tz) is continuous in the real t for each fixed z,
then the mapping T is linear. In 1978, a generalized solution to Ulam’s
problem for approximately linear mappings was given by Th. M. Rassias
[8]. He considered a mapping f : £} — Es satisfying the condition of
continuity of f(¢z) in ¢ for each fixed z and assumed the weaker condi-
tion || f(z +y) — f(=z) — fW)Il < O(||l=||” +[ly||"), for all z,y € E;, where
# > 0 and 0 < p < 1. He proved that the above function T : Ey — Fj
is the unique linear mapping satisfying || f(z) — T(z)|| < 5255 ||z/|P. The
proof given in [8] works also when p < 0. In 1990 Th. M. Rassias asked
the question whether such a theorem can also be proved for p > 1. In [2]
Z. Gajda followed a similar approach as in [8] and obtained a solution of
this problem for p > 1. His result states that the mapping T : E; — E»
defined by T'(z) = lim,,—o 2" f(27"z) is the unique additive mapping
satistying [|f(z) — T(z)|| < 525 |z|/?. The problem when p = 1 is not
true. Counterexamples for the corresponding assertion in the case p =1
were constructed by Gajda [2] and Rassias and Semrl [9]. Y. H. Lee and
K. W. Jun [7] have improved the stability problem for approximately
additive mappings. This leads to the problem of proving the similar
results replacing the right-hand side with H(||z|, ||y||), where H is a
two variable real function on R x Ry. Some answers to this question
were given recently by Rassias and Semrl [10] and Isac and Rassias [5].
Therefore the general question is to find weaker conditions under which
the direct method works. The stability problems of several functional
equations have been extensively investigated by a number of authors. In
this paper, using an idea from the direct method of Hyers, we shall give
conditions in order for a linear mapping near an approximately additive
mapping to exist.

2. Stability of additive functional equation

Let Rt denote the set of all nonnegative real numbers. Recall that
a mapping H : Rt x R* — R¥ is homogeneous of degree p > 0 if it
satisfies H (tu, tv) = t? H(u,v) for all t,u,v € R*. The following theorem
is due to Th. M. Rassias and P. Semrl [10].

THEOREM 2.1 [10, Theorem 1]. Let E; be a real normed space,
E, a Banach space. Assume that H : Rt x R* — R™T is a monoton-
ically increasing symmetric homogeneous function of degree p, where



Stability of additive functional equation 681

p>0, p#1 and define H(1,1) = 6. Let f : E; — Ej satisfy

I1f (z +y) — f(=) — F)ll < H(ll=ll, llyl)

for all z,y € E,. Then there exists a unique additive mapping T : E; —
FE, such that

1f(z) = T@) < 57

= Hllell ) = = rlel?

for all x € E,. Moreover, if for every fixed x € E, there exists a real
number 6, > 0 such that the function t — || f(tz)|| is bounded on [0, d,],
then T is linear.

We will show that Theorem 2.1 is still valid if the condition of mono-
tonically increasing symmetric homogeneous function of degree p is
changed to the weaker condition as follows.

THEOREM 2.2. Let E; be a real normed space, E5 a Banach space.
Let p>0, p# 1 and let H: Rt x Rt — R be a mapping satisfying
H(tz,ty) < tPH(z,y) for all' t,z,y € RT. Suppose that a function
f: BE1 — Fj satisfies

(2.1) If(z+y) = f(=) = fll < H{l=ll, llyl)

for all z,y € Ey. Then there exists a unique additive mapping T : E; —
E, such that

H1,1), o
(2.2) If(z) = T(z)l| < PP Zpl H(|lz]l, llzll) < e 2,,||| z||

for all x € E,|. Moreover, if for every fixed x € Ei, there exists a real
number &, > 0 such that the function t — || f(tx)|| is bounded on [0, 8],
then T is linear.

Proof. Case p<1.
Let z be any fixed element in E;. The relation (2.1) for y = z yields
1f(2z) — 2f(z)|| < H(||zll, [lz]l), which implies

(2.3) 1271 f(22) - f(@)ll < 2 H(|al 2],
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Claim that

2n( p—1)
(2:4) 27" f(2"z) = f(2)| < ‘f H(l|l, [l1])

for any positive integer n. The verification of (2.4) follows by induction
on n. Note that (2.4) reduces to (2.3) for n = 1. Assume now that (2.4)
holds and we want to prove it for the case n+ 1. We write the inequality
(2.4) for 2z instead of z and divide by 2. We obtain

n(p—1)
|27 (2 a) =271 f20)] < Bl 2]
2n| p—1) .
< =gy 2 H (e el

By the triangle inequality, together with the inequality (2.3), we get
12777 F (2 ) — f@)]| < 277N F (20 ) - 27 f(22)]
+271f (22) — f(@)]]

1— 2(n+1) p—1)
<22 ol )

Thus (2.4) is valid for any positive integer n, and it follows that

(2.5) 127" f(2%2) = f(@)]| < =5, H(llzl], ll2I)

because {2P~1)} converges to zero, as p < 1. However, for m > n > 0,

127 f(2mx) — 27" F(2Rw) || = 27727 M F (2R — F(2Ra)|
1= 9(m—n)(p—1) " N

<2t H(all, 2" o)

m—n)(p—1

< on(-1) 1 — aof )(p—1)
- 2—2p

H{(|lz]], ll=[])-

Because the right-hand side of the above sequence of inequalities tends to
zero if n tends to infinity. Therefore {27 f(2"x)} is a Cauchy sequence.
But E5, as a Banach space, is complete, and thus the sequence converges.
Define T'(z) = lim, 0o 27" f(2"z) for all € F;. Inequality (2.4) implies

I7() ~ F@ < ggs Hllle, lal) < T o
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It follows from (2.1) that
212" (@ + )] — FI2a] — fl2]ll < 2 H(@ el 2" )
< 2"V H(|l2|, lyl),
which implies T'(z + y) = T(z) + T(y), since the sequence {27P~1}
converges to zero when n tends to infinity. This condition implies that
T(2"z) = 2"T(z) for any x € E;. We want to prove that T is the
unique such function. Suppose that there exists another one V such
that [[V(z) — f(z)|| < 555 H1(llz||, |=]]) for a certain function H, with
the corresponding ¢ < 1. Then we have
1T(z) — V()| = 27"||T(2%z) — V(2"z)||
" T n n
< g H&, 2%zl | o Ha(2"llzll, 2% 2])
2-—-2p 92 _ 99
H({|]}, [l=]]) —yy Hi [l ]}
< 2n(p 1) 2”(‘1 1) > .
2-2p + 2 — 29
Since both terms of the right-hand side in the above inequalities tend to
zero for n tending to infinity, T' coincides with V.
Case 1 < p.
Putting £ in place of  and y in inequality (2 1), we obtain

@0 | -27(G)] < (G151 < 0t e
for all z € E;. Hence for each n € N and every z € E;, we have by (2.6)
I - 25 (5)
s fo =20(5)]+2(3) -2 ()]
(=) -2 ()
< 27+ H(lel, Jol) + 2*~#z (121, 1)

2
2.7
&0 TS PH(Z‘LCUHP——;LT”J

< 27PH(||z), ||jz]|) + 2" H(||z|, |lz]l) +
+ 2" P H(||2 ), [l

=27P(1 4277 + 22077 4 4 2 VOP (g )
H(|[z| ll[l)-

<
= op _
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Now, fix an z € E; and choose arbitrary m,n € N such that m > n.

Then by (2.7)
1(3:) -2 (=)

“2 f(2’”> 2"f< )H 2"
271 T
<— op 2H (Hr)]i”’ ||2n“)

277,
< gz el I,

which becomes arbitrarily small as n — oo. On account of the com-
pleteness of the space Eq, this implies that the sequence {2"f(3%)} is
convergent for each z € E;. Thus T is correctly defined by T(z) =
lim,, o0 2" f (5% ). Moreover it satisfies condition

1£@) - T@I < g H(lal ol < T i,

which results on letting n — oo in (2.7). Finally, replacing = by o=
and y by 2% in (2.1) and then multiplying both sides of the resulting
inequality by 2", we get
lonr(55Y) 21 (52) - 221 (L) < 207 H Uz, Iy

for z,y € E;. Since the right-hand side of this inequality tends to zero as
n — 00, it becomes apparent that the mapping T is additive. It is also
clear what has to be changed in the proof of the uniqueness of T. The
remaining assertion in the theorem is proved by the same argument as
that of [10]. Assume that for every fixed € F; there exists a positive
real &, such that the function ¢ — || f(tz)| is bounded on [0,d,]. Fix
z € E1 and ¢ € E;5 (the dual space of E3). Let us denote

M, = sup{||f(tz)| : t € [0,0,]}.

Consider the function ¢ : R — R defined by ¢(t) = o(T(tz)). It is
obvious that ¢ is additive. For any real number ¢ € [0, 6], we have

B0 = PTED] < IITE < IAI0T () - £+ 1))
< ol (g e sl + 1. )

<l (o 2E e, 1) + Mz ).
23]
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It is a well known fact that if an additive function ¢ : R — R is bounded
on an interval of positive length, then it is of the form ¢(t) = ¢(1)¢ for
all real values of ¢ [1, Corollary 2.5]. Therefore ¢(T'(tz)) = ¢(tT(z)) for
any t € R, and consequently 7" is a linear mapping. O

REMARK 2.3. In Theorem 2.2, the mapping T is also linear if for each
z € E; the transformation ¢t — f(tz) is continuous [8]. The condition
(2.2) is still true for all z € £, — {0} when p < 0. Furthermore in case
p < 1, the condition H(2z,2y) < 2PH(z,y) has been only used and in
case p > 1, we have used the condition H(3z, 3y) < 5 H(z,y). Thus it
is easy for someone to see that the proof of Theorem 2.2 as given above
shows that the condition

1
1f(2) = T(z)|| < p—_zng(vall, 1)

is still true under the condition H(tz,ty) < t*?H(x,y) for all z,y €
R*, where t = 2, % and p € R — {1}. Hence we obtain the following
corollaries, which were the results of Th. M. Rassias [8], Z. Gajda [2], G.
Isac and Th. M. Rassias [6]. In particular, in case p < 1, the conclusion

of Theorem 2.2 coincides with the result of Gavruta [3].

The following corollary can be found in [2].

COROLLARY 2.4. Let E; be a real normed space, E5 a Banach space.
Let f : Ey — E5 be a mapping for which there exist two constant € > 0
and p € R — {1} such that

1z +y) - f(z) = F)ll < e(llzl” + ly”)

for all z,y € E; (Ey — {0} if p < 0). Then there exists a unique additive
mapping T : E, — E5 such that ‘

2¢
2 — 27|

[l

1f(z) - T(@)]| <

for all x € Eq (E; — {0} if p < 0). Moreover, if for every fixed x € E;
the transformation t — f(tx) is continuous in t € R, then the mapping
T is linear.

The following corollary can be referred in [6].



686 Kil-Woung Jun and Hark-Mahn Kim

COROLLARY 2.5. Let E be a real normed space, E2 a Banach space.
Let f : By — E5 be a mapping for which there exist three constant € > 0
and p1, ps € R— {1} such that po <p; <lorl<p; <p; and

I1f(z +y) — flx) = FI < e(llxl” + lyll™)

for all z,y € E; (E; — {0} if p; < O for some i). Then there exists a
unique additive mapping T : E; — Es such that

ell]®t +]|2[|72)

I ) <p1 <1,
7@ - T@)l < { oy 2 EP Y
ey (1< p2<p1)

for all x € E, (E, — {0} if p; < 0 for some 3). Moreover, if for every
fixed x € E; the transformation t — f(tz) is continuous in t € R, then
the mapping T is linear.

Proof. To apply Theorem 2.2, we consides H(t,s) = e(t** + sP2). In
case pz < p1 <1, we have

H(2t,28) = e(2P1tP* 4 2P26P2) < 2P1g(tP' 4 sP2) = 2P H (Y, s).

In case 1 < py < py, we get
t s th sP2 1 1
— —} = R . (4P P2y —
H(2’ 2) = 6(2?1 + 2pz) S g et +87) = g H L s).
Applying Theorem 2.2 and using Remark 2.3, we obtain the results. [J
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