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GENERALIZATIONS OF THE
STRENGTHENED HARDY INEQUALITY

Young-Ho KiMm

ABSTRACT. In this article, using the properties of power mean,
some new generalizations of the strengthened Hardy’s inequalities
are given.

Ifa, >0,A, >0, A, =3 _An{n€N)and0 < Zf;l)\nan < 00,

m=1
then
o0 o0
E An(adtad? - gt )t/ < e E Anln,
n=1 n=1

which is called Hardy’s Inequality, and it is well known (cf. [3, Theorem
349]). Recently, a strengthened following inequality is proved in [6)].

THEOREM A. If0 < Apy1 < Apy A =20 1 Ams an 2 0 (n € N)
and 0 < 3°0° | Apa, < 0o, then

o0 oo )\n
(*) ;An+1(ai\laé\2 "'Qﬁ")l/A" < 6;{1 — m} )\nan.

For any positive values ay, ag, ..., a, and positive weights a1, ag,
.oy Qn,y ooy o =1, and for any real p # 0, we defined the power mean
or the mean of order p of the value a with weights o by

"
1/p
. — . —_ vy
My(a;a) = Mp(ai, a2,...,0,;00,02,...,00) = (E aiai) .
. i=1
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An easy application of L’Hospital’s rule shows that

n

lim M,(a;0) = Ha?”,
p—0 iy

the geometric mean. Accordingly, we define Mo(a;a) = [, ai". It
is well known that M,(a;a) is a nondecreasing function of p for —oo <
p < 0o and is strictly increasing unless all the a; are equal (cf. [1]). This
result includes the arithmetic-mean and geometric-mean inequality as a
special case.

In this article, using the strict monotonicity on the power mean of
distinct positive numbers, we shall prove some theorems. To prove the-
orems, we introduce the following lemmas.

LEMMA 1. If a1, a9, ..., a, > 0 and o1, as ..., a, > 0 with
S o; =1, then we have the following inequality:

n k n k
(1) (H a?i) < (Z ai%)
i=1 i=1
for 0 < k with the equality holding if and only if all a; are same.

Note that Lemma 1 is easily deduced form the fact that M,(a;a) is
a continuous strictly increasing function of p.

LEMMA 2. For all x > 1, we have

@ (12 () < dm (1) =e

Proof. We make the following auxiliary function

1 (5x+6

1
f(z) =3:1n<1+;) + =ln Pl

> ) z € [1,00).

It is obvious that

! _— 1 1
f@) =g tin(1+3) -3 (z +6/5)(x + 1/5)
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and, for all z > 1, it can be shown that

1 1 1 1
I+27 a(l+2)  2z+1/5° 2w +6/57
_ —5z(25z2 + 10z — 7)

©1250z(1 + z)2(z + 1/5)2(x + 6/5)2

< 0.

(@) =

Therefore f'(x) is decreasing on [1,00). Then for any z € [1,00), we
have f'(z) > lim,; oo f'(z) = 0 and so f'(z) is increasing on [1, 00) and
f(z) <lim, o f(z) =1 for all z € [1,00). By the definition of f(z), it

follows that 1N® /53 + 63 1/2
(HE) (5:r+1) =

Hence (2) is true for all z € [1,00). This completes the proof. O

REMARK 1. By the direct calculation, we have following inequality

® 0+xi¢)qm<(l‘gj%ﬁ)

5

for all z > 1.

We can deduce the following improvement result of Theorem A:

THEOREM 1. If0 < Apg1 < A, Ay =320 1 A, @, > 0(n € N) and
0< 320, Man < oo, then

o0
5A,, + 6X,\~1/2
A Az adn /A,
anﬂ(all%z WA <o Z( . ) Andn.
Proof. By the arithmetic-geometric mean inequality, we have
fI1 qz . aq" < Z dmQm,

where a,, > 0 and g, > 0 (m=1,2,...,n) with >_" _, ¢, = 1. Setting
cm > 0, am = ¢y and g = A /A, we obtain

1 n
(c1a1)/ A7 (czaz) 2/ - (cpan) M/ Bn < T Z A CrmGm.-
mn
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Using the above inequality, we have

A AnV1/An
EjAnH e} ay)V

= A (cran)M/An (cpap) 2/ An - - (cpan) /A
= Z n+1 ( A1 A2 "'C)\”)]-/An

citeh

An
{(61\1032...“ 1/An ] 2 AmCrmm

[Ms i

n=1
00 00
An+1
= D AmCmam ) N o) UA
m=1 n=m A (cl *Cn ) "

Choosing ¢ Med2 o= (Apg1)™ (0 € N) and setting Ag = 0, from
1 C2

n

Ant1 < Ay, it follows that

e = [(@A\—f*]/ e R A (S

This implies that

o
S el o < 3 dnan 3
n=1

An—l—l
=1 1
= 7nZ:1 )\mC'mam ;ﬂ(A_n - An+1)
= mi::l Amf';cmam

<3 (e ) e

Hence, by the above inequality and Lemma 2, we have

3 /
> dnalaiad ) < Z(SSAAm J;G/\)\ )

Thus Theorem 1 is proved. O

The main purpose of this paper is to prove some new generalizations
of the above mentioned inequality.
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THEOREM 2. If0 < A\py1 < Ap, Ay = S i Am (A >1),a, 20

m=1

(ne€N)and 0 <) 7 Ap(an)t < oo for 1 <t < oo, then

Z)‘m—l al a2 G )t/A

< tel/?t Z (5A +62n > 1/2t/\nanA£ll‘t)/t (i: )\kaak)

k=1

(4)

t—1

Proof. By Lemma 1, we have

(of'af - af)’ (zqmam), t>1,

where o, > 0and ¢, >0 (m=1,2,...,n) with 3" _ g, = 1. Setting

cm > 0, oy = Cmam, and g, = Am/Ap, We obtain

((cra) /A (caa2) 2/ 8% - (cpan) /)’ ( Z Amc’”am) '

Using the above inequality, we have

A Anyt/A
Ansi(aytay® - aym)t

M8 ||M8

ci1a1 AI/A CoQy }‘2/Aﬂ < (Cpln )‘n/An t
( )

(01\163\2 . )\n)l/An

An
e ] (3 35 v
A'n.—}—l t
[(0?1%\2 e t//\ ] (Z )\mcmam>

for A, > 1 and t > 1. Choosing ¢}*c)?---c)* = (Apy1)?/t (n € N)
and setting Ag = 0, from A,4; < A, we have

An—|—1
1

3
It

1

3
Il

<

[M]8

n=1

- [(( nt1)? ]1/“

n)An 1

Ang1\An/tAn An \ A/t g
= _ . < _ . .
(1+ A, ) Ad" < (1+An) A

(6)
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By using the following inequality (see 2], [5]),
n i n m t—1
(Em) <t Xm(Xm)
m=1 m=1 k=1

where t > 1 is constant and z,, >0 (m = 1,2, ), it is easy to observe
that

n t n m t—1
(7) (Z )\mcmam) <t Z A Con G (}_‘ /\mcmam> .
m=1 m=1 k

Then, by (5) ~ (7), we obtain
(8)

(o)
A1 A AnNt/An
Z)\n+1(a11a22"'an )Y/
n t
Ant1 ]1<Zx\ca>
N A A U mbtmbm
(611022 ) cn )t/A" An m=1

> An 1 n m t—1
< Z [( YRSV .Jrl;\Ln)t/An ] K;tmzzl AmCmam <; )\mcmam)
)\n m t—1
AnAZ:_l ) (2_: /\mcmam>

0o 1/t t—1
St [(1 " Am}Am)Am/Am] A (i A’”Cma'”) |

k=1

Hence, by the above inequality (8) and Lemma 2, we have

oo

A1 A AnNt/An
S Ansi(adiagr - adn)
n=1

o0 m t—1
5A,, 4+ 6\, —1/2t
< tellt E -~ )\mamA(l”t)/t< E )\mcmam> .
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Thus the inequality (4) is proved. O

REMARK 2. Setting ¢ = 1 in Theorem 2, then from (4), we obtain
the inequality in Theorem 1 and, letting A,, = 1 in Theorem 2, then (4)
becomes

o0

RISV 1 =12
9) (araz---ay) <e;(1+n+%) Q.

n=1
The inequality (9) is a better improvement of the following Carleman’s
inequality (cf. [3, Chap. 9.12]):

oo o0
Z(alag . -'an)l/" < eZan.
n=1 n=1

Moreover, we can consider a generalization version of Theorem A.

THEOREM 3. If0 < A1 < A, A =3 A (A > 1), a0, >0
(neN)and0< 3 2 A(an)t <ocoforl <t< oo, then

00

A1 A An /A
> Ansi(ay?ay? - ap)te
n=1

n=1 n " k=1

(10) 3

Proof. The proof is immediate. In fact, by the inequalities (3), (8)
and Lemma 2, we have

[SS)

A1 A An\t/A
> Ansi(aitay? - apm)i e
n=1

< te Z( _m m®m Z mCmam .

m=1 k=1
Thus the inequality (10) is proved. O

REMARK 3. Setting ¢ = 1 in Theorem 3, then, form (10) we have the
inequality (). Of course, we know that the inequality (4) is a better
improvement of the inequality (10).

ACKNOWLEDGMENT. The author thank the editor and the referee for
their valuable comments.



708 Young-Ho Kim

References

[1] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin/New
York, 1961.

[2] G. S. Davis and G. M. Peterson, On an inequality of Hardy’s (II), Quart. J.
Math. (Oxford) 15 (1964), 35-40.

(3] G. H. Hardy, J. E. Littlewood, and G. Polya, /nequalities, Cambridge Univ.
Press, London, 1952.

[4] Y.-H. Kim, Refinements and Extensions of an inequality, J. Math. Anal. Appl.
245 (2000), 628-632.

[5] J. Németh, Generalizations of the Hardy-Littlewood inequality, Acta. Sci. Math.
(Szeged) 32 (1971), 295-299.

[6] B. C. Yang, On Hardy’s inequality, J. Math. Anal. Appl. 234 (1999), 717-722.

[7] B. C. Yang and L. Debnath, Some Inequalities Inuolving the Constant e, and an
Application to Carleman’s inequality, J. Math. Anal. Appl. 223 (1998), 347-353.

[8] P. Yang and G. Z. Sun, A Strengthened Carlemen’s inequality, J. Math. Anal.
Appl. 240 (1999), 290-193.

BRAIN KOREA 21 PrROJECT CORPS, CHANGWON NATIONAL UNIVERSITY, CHANG-
WON 641-773, KOREA
E-mail: yhkim@sarim.changwon.ac.kr



